

1.

PEACE RIVER REGIONAL DISTRICT

Dawson Creek | Box 810, 1981 Alaska Avenue BC, V1G 4H8 (T): (250) 784-3200 prrd.dc@prrd.bc.ca

Fort St. John | 9505 100 Street BC, V1J 4N4 (T): (250) 785-8084 prrd.fsj@prrd.bc.ca

For Office Use:
Receipt #
Date Received
File No
Sign Issued: Yes No N/A

Application for Development

. TYPE OF APPLICATION	FEE
Official Community Plan Bylaw Amendment*	\$ 1,150.00
Zoning Bylaw Amendment* #	\$ 800.00
Official Community Plan / Zoning Bylaw Amendment combined* #	\$ 1,200.00
Temporary Use Permit*	\$ 500.00
Temporary Use Permit Renewal	\$ 350.00
Development Permit [#]	\$ 165.00
Development Variance Permit	\$ 165.00

* Sign is required for this application type. Sign provided by the PRRD and posted pursuant to Section 6 of Bylaw No. 2449, 2021, attached.

Contaminated Site Declaration Form required for this application type.

Exclusion from the Agricultural Land Reserve	\$ 1,500.00
(Applicant responsible for additional costs associated with the	
advertisements, signage, and facility rental, if applicable)	

2. PLEASE PRINT

Property Owner's Name	Authorized Agent of Owner (if applicable)
Deanna Steward, John Steward, Kevin Steward, Jacqueline Henderson, Katelan McBrearty	n/a
Address of Owner	Address of Agent
City/Town/Village:	City/Town/Village:
Postal Code:	Postal Code:
Telephone Number:	Telephone Number:
E-mail:	E-mail:

Notice of collection of personal information:

Personal information on this form is collected for the purpose of processing this application. The personal information is collected under the authority of the *Local Government Act* and the bylaws of the PRRD. Documentation/Information submitted in support of this application can be made available for public inspection pursuant to the *Freedom of Information and Protection of Privacy Act*.

3. PROPERTY DESCRIPTION

Ill legal description and PID of each	property under application	Area of each lo	ot
DL 1889 PRD Excep	t Plan PGP 17392	4.57 h	ha./acres
			ha./acres
			ha./acres
		TOTAL AREA 4.5	7 ha. ha./acres
Civic Address or location of prope	rty:588	9 E Center Moberly Lak	mial Road
PARTICULARS OF PROPOSED AME		the bury bur	
Please check the box(es) that apply	to your application type:		
[] Official Community Plan (OCP)			
	n:		
Text amendment:			
Zoning Bylaw amendment:			
Existing zone:	R4		
Proposed zone:	R3		
[] Development Variance Permit	- describe proposed variance	e request:	
[] Temporary Use Permit – descri	be proposed use:		
[] Development Permit:	Bylaw No	Section No.	
Describe the existing use and build	ings on the subject property:	:	
The property is vacant land and is current	tly not being used.		
Describe the existing land use and l	unuings on all lots adjacent	to and surrounding th	ne subject property:
(a) North Crown land	an a private vacant lat (Lat A DC		
	hen a private vacant lot (Lot A PG	F UL400 PKU)	
(c) South Moberly Lake			

(d) West Private lot and mobile home - 5897 E Centennial Road, Moberly Lake, BC

- 8. Describe your proposal. Attach a separate sheet if necessary: The proposal is to subdivide the parcel into 4 separate lots. The total area of the parcel is 4.57 hectares and we would like to subdivide to approximately 4 equal lots as per attached subdivision and sewer assessment. This will entail rezoning the property from R4 (>1.8 ha) to R3 (>0.9 ha).
- Reasons and comments in support of the application. Attach a separate sheet if necessary: As part of estate planning we would like to distribute the property for family members on title and / or sell to third parties.

10. Describe the proposed and/or existing means of sewage disposal for the property:

There is no sewage system on the property at present. We hired L&M Engineering (Prince George) to provide a thorough Sewage Suitability Assessment (as attached). Each of the 4 proposed lots is capable of supporting a Type 1 Sewage System.

11. Describe the proposed and/or existing means of water supply for the property:

Purchasers / owners will determine their means of water supply (eg. wells, hauled water, etc.). Areas for wells have been outlined in the Sewage Suitability Assessment as attached.

THE FOLLOWING INFORMATION IS REQUIRED DEPENDING ON THE PROPOSAL/APPLICATION:

- Proof of ownership of the subject property or properties. (For example: Certificate of State of Title, BC 12. Land Title Office Property Title Search or recent Property Tax Notice.) Certificate of Title Attached,
- A Sketch Plan of the subject property or properties, showing the following: 13.
 - (a) the legal boundaries and dimensions of the subject property; Map Attached .
 - (b) boundaries, dimensions and area of any proposed lots (if subdivision is being proposed); Assessment Attached
 - (c) the location and size of existing buildings and structures on the subject property, with distances to No existing structures. property lines;
 - (d) the location and size of any proposed buildings, structures, or additions thereto, with distances to Assessment Attached. property lines;

ADDITIONAL OR MORE DETAILED INFORMATION MAY BE REQUESTED BY THE PEACE RIVER REGIONAL DISTRICT FOLLOWING REVIEW OF YOUR APPLICATION.

If it is necessary for the property boundaries and the location of buildings and structures to be more accurately defined, a survey plan prepared by a British Columbia Land Surveyor may be required.

- (e) the location of any existing sewage disposal systems; No existing sewage systems.
 (f) the location of any existing or proposed water source. Assessment Attached.

	Date signed
Nov9	2024
	<u>2024</u> Date signed
	Nov9, 2024
you have an agent act on your beha	alf in submission of this application, the following
uthorization MUST be signed by ALL	L property owners.
I / We	and hereby authoriz
(name of landowner)	(name of landowner)
n/a	to act on my/our behalf regarding this application.
(name of agent)	
(name of agent) Signature of Owner:	Date:

PEACE RIVER REGIONAL DISTRICT

CONTAMINATED SITE DECLARATION FORM

Deanna Steward, J. Kevin Steward, Katelan McBrearty 1, Kevin Steward, Jacqueline Henderson, hereby acknowledge that the

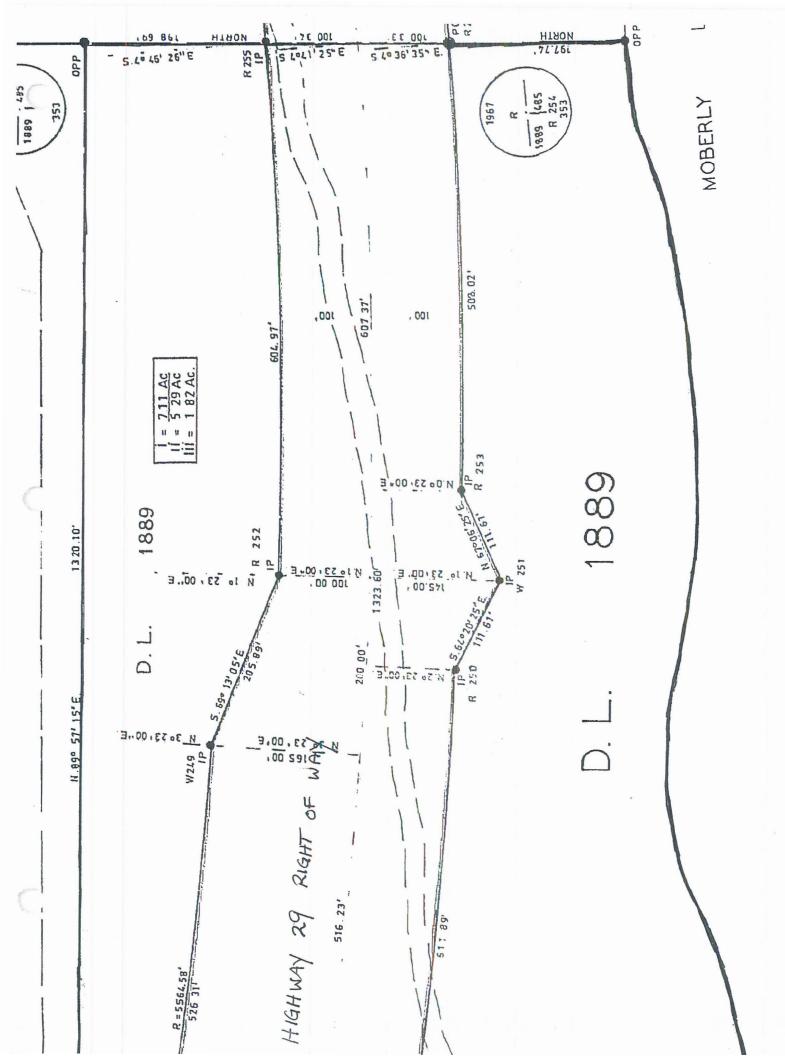
Environmental Management Act, 2003, as amended, is effective as of February 1, 2021.

Legal Description(s):

DL 1889 PRD Except Plan PGP 17392

Please check only one:

I have read <u>Schedule 2</u> and based on my personal knowledge of the property in question, I do not believe that it is or has been used for any of the industrial or commercial purposes and activities specified in <u>Schedule 2</u> of the regulations. Accordingly, I elect not to complete and submit a 'site disclosure statement', as outlined in Section 40.(1) of the Act.


I have read <u>Schedule 2</u> and one or more of the identified purposes or activities is or has occurred on the land(s) legally described above.

*Please contact staff to submit a "site disclosure statement" at planning@prrd.bc.ca

I further acknowledge that this declaration does not remove any liability, which may otherwise be applicable under the legislation.

	Nor 9.2024
	Nov 9, 2024
	dd mm yyyy
	Norg. 2024
Owner/Agent	dd mm yyyy
	Nov 9, 2024
	Nor $9, 2094$ it the ministry's Identification of Contaminated Sites webpage or e-mail

SiteID@gov.bc.ca

July 16th, 2024

PROPOSED 4 LOT SUBDIVISION

SEWAGE SUITABILITY ASSESSMENT

5889 EAST CENTENNIAL ROAD, MOBERLY LAKE, BC DSITRICT LOT 1889 PEACE RIVER LAND DISTRICT EXCEPT PLAN PGP17392 PID: 005-606-331

Client: Deanna Steward L&M Project No.: 1913-01

L&M ENGINEERING LIMITED

1210 Fourth Avenue, Prince George, BC V2L 3J4 Phone: (250) 562-1977 5889 E. Centennial Road, Moberly Lake, BC, PID: 005-606-331Date: July 16th, 2024Deanna Steward – Proposed 4 Lot Subdivision Suitability AssessmentProject No.: 1913-01

TABLE OF CONTENTS

1.0	INTRODUCTION	2
2.0	BACKGROUND REPORTS AND DATA	2
3.0	EXISTING SITE CONDITIONS	2
3.1.	TOPOGRAPHY	2
3.2.	SUBSURFACE SOILS	
3.3.	DEVELOPMENT ACCESS	3
3.4.	EXISTING SERVICING	3
4.0	ONSITE SEWAGE SERVICING	3
4.1.	SOIL PROFILE AND CHARACTERISTICS	
4.2.	SOIL PERMEABILITY	5
4.3.	DESIGN FLOWS	5
4.4.	SEWAGE TREATMENT TYPE	5
4.5.	SEWAGE SYSTEM RECOMMENDATIONS	6
5.0	DISCLOSURE	8

Appendix A:Onsite Sewage Evaluation DataAppendix B:Sewage Suitability Assessment Drawings

1.0 INTRODUCTION

L&M Engineering Limited has been engaged by Deanna Steward to complete an onsite sewerage system suitability assessment for the proposed 4 lot subdivision created from the subject property (PID: 005-606-331) located on Moberly Lake.

The subject property, 5889 E. Centennial Road, is approximately 4.57 ha. The property is zoned R4: Residential 4 Zone (> 1.8 ha) in the *Peace River Regional District Zoning Bylaw No. 1343*. The proposed subdivision will create four new lots, resulting in a rezoning to R3: Residential 3 Zone (> 0.9 ha), as followed by the property owner's plan.

2.0 BACKGROUND REPORTS AND DATA

L&M Engineering has reviewed and conformed to the following guidelines and information in relation of the proposed suitability assessment:

- PRRD Zoning Bylaw No. 1343, 2001;
- Northern Health Guidelines for Subdivision;
- BC Sewerage System Regulation (SSR); and
- Sewerage System Standard Practice Manual Version 3 (2014).

3.0 EXISTING SITE CONDITIONS

3.1. TOPOGRAPHY

The subject property is bisected by Highway 29. On the South side, the proposed Lot 1 and west end of Lot 2 are relatively flat, gaining a slight slope when approaching the road. The rest of proposed Lot 2, as well as Lot 3 and Lot 4, have more varying slopes between 10-15% towards the lake (N to S). On the North side of the highway, Lots 1 to 4 all have more aggressive slopes varying between 15-20%, again sloping downwards in the lake's direction.

3.2. SUBSURFACE SOILS

Soil test pitting on the subject property was conducted on June 18th, 2024 by L&M Engineering to establish onsite sewage suitability and recommendations for the proposed development. On the South side, the soils on Lots 1, 2, & 4 consisted primarily of loamy sand or loam, while on Lot 3 the soil was found to be clay till. On the North side of the highway, the soils consisted primarily of structured clay with trace amounts of silt. None of the test pits revealed an indication of groundwater presence. Please refer to Appendix A for the full soil assessment.

3.3. DEVELOPMENT ACCESS

Proposed Lots 1 to 3 will have direct frontage access to E. Centennial Rd, and proposed Lot 4 to Highway 29. These accesses will be along the north boundary of the development, on the South side of the highway.

3.4. EXISTING SERVICING

There is no existing sewer system available to service the proposed lots. The proposed new lots will require onsite sewage systems to support the subdivision development.

4.0 ONSITE SEWAGE SERVICING

Northern Health's Guidelines for Subdivision indicates that a minimum of two observation holes are required in each of the proposed discharge areas (pg. 14). L&M Engineering Limited completed a minimum of four (4) test pits per proposed lot to support the proposed subdivision development.

4.1. SOIL PROFILE AND CHARACTERISTICS

A total of 14 test pits were completed for the proposed subdivision development. Table 1 below provides a summary of the typical soil structure. Refer to Appendix A for the full test pit log.

Table 1 – Soil Profile Summary								
Test Pit Number	Depth (m)	Soil Type	Description	Groundwate Conditions				
	0 – 0.25m	Organic soil	Dry	Plenty Roots (5-30mm)				
1	0.25 – 0.5m	Fine Silty Sand	Angular / Blocky / Moderate / Dry	None				
	0.5 – 0.65m	Silty Sand with Gravel	Angular / Blocky / Moderate / Dry	None				
	0.65 – 1.8m	Sandy Silt Trace Clay	Structureless / Weak / Dry	None				
2	0-0.2m	Organic soil	Dry	Plenty Roots (5-30mm)				
	0.2 – 0.5m	Silty Sand	Platy / Weak / Dry	Some Roots (5 – 10mm)				
	0.5 – 0.7m	Gravelly Sand	Granular / Weak / Dry	None				

L&M Engineering Limited

Page | 3

5889 E. Centennial Road, Moberly Lake, BC, PID: 005-606-331 Deanna Steward – Proposed 4 Lot Subdivision Suitability Assessment Date: July 16th, 2024 Project No.: 1913-01

	0.7 – 1.1m	Sandy Loam	Structureless / Strong / Friable	None
	1.1 – 1.7m	Sandy Loam with Gravel	Granular / Weak / Dry	None
	0-0.15m	Organic soil	Dry	Some Roots (5 – 20mm)
3 -	0.15 – 0.7m	Sand with Coarse Gravel	Structured / Moderate / Dry	None
	0.7 – 1.0m	Sand with Gravel	Structured / Moderate / Dry	None
	1.0 – 1.8m	Clayey Sand	Structured / Moderate / Dry	None
5	0-0.2m	Organic soil	Dry	Plenty Root (5-40mm)
	0.2-0.8m	Sand Trace Silt with Gravel	Platy / Strong / Dry / Firm	None
	0.8 – 1.6m	Sandy Silt with Gravel	Platy / Moderate / Dry / Firm	None
7 -	0-0.3m	Organic soil	Moist	Some Roots (5 – 20mm)
	0.3 – 2.0m	Sandy Silt Loam	Granular / Moderate / Dry / Friable	None
8	0-0.25m	Organic soil	Dry	Plenty Root (5-30mm)
	0.25 – 0.6m	Sandy Loam with Gravel	Granular / Weak / Moist	None
	0.6 – 1.1m	Fine Silty Sand	Granular / Weak / Dry	None
	1.1 – 1.3m	Sand with Gravel	Granular / Moderate / Dry	None
	1.3 – 1.9m	Fine Silty Sand	Granular / Weak / Dry	None
	0 – 0.3m	Organic soil	Dry	Some Roots (5 – 20mm)
9	0.3 – 0.9m	Clay Till Trace Sand	Granular / Weak / Dry	None
	0.9 – 1.6m	Clay Till	Platy / Moderate / Dry	None
10	0-0.2m	Organic Soil	Dry	Some Roots (5 – 20mm)
10	0.2-0.7m	Clay Till	Blocky / Moderate / Dry / Firm	None

L&M Engineering Limited

Page | 4

4.2. SOIL PERMEABILITY

Field-saturated hydraulic conductivity testing was performed using a permeameter and 7.5cm diameter Edelman auger. Auger holes were drilled at the bottom or a bench partway down the test pit and permeameter tests were conducted to determine the hydraulic capacity of the native soils. The field saturated hydraulic conductivity testing is summarized in Table 2 below. Refer to Appendix A for detailed permeameter results.

Permeameter Test Number	Corresponding Test Pit	Depth of Auger Hole (m)	Stable Rate of Fall (mm/min)	Soil Factor	KFS Value (mm/day)
1	TP 1 @ grade	0.50	5.3	56.4	296
2	TP 2 @ bench	1.00	17.0	56.4	959
3	TP 3 @ bench	1.20	5.4	56.4	305
5	TP 5 @ bench	1.10	6.0	56.4	339
7	TP 7 @ bench	0.80	9.5	56.4	536
8	TP 8 @ grade	0.50	6.0	56.4	339
9	TP 9 @ bench	0.60	1.9	56.4	106

4.3. DESIGN FLOWS

The design basis for onsite septic suitability to support subdivision is 1,600 L/d which is the estimated flow for a 4-bedroom dwelling as indicated in the Northern Health Subdivision Guidelines and the Sewage System Standard Practice Manual V.3 (SPM.V3).

4.4. SEWAGE TREATMENT TYPE

For the purposes of subdivision approval, the proposed subdivision must have adequate site conditions to provide a sewage system and reserve area for basic sewage treatment and disposal systems.

The classification of a sewage treatment system is defined by the type of effluent achieved after treatment. The effluent types are established by the regulatory body. The required treatment type for a system is primarily based on site constraints and disposal methods.

The Ministry of Health classifies effluent quality from treatment as Type 1, Type 2, and Type 3. The different treatment classes are defined as follows:

- Type 1: Septic tank treatment resulting in an effluent quality of 150-300 mg/L BOD5 and 50-80 mg/L TSS with effluent filter;
- Type 2: Septic tank and activated sludge (mechanical) treatment resulting in an effluent quality of <45/45 mg/L for BOD5 and TSS respectively;
- Type 3: Septic tank, activated sludge, and disinfection resulting in an effluent quality of <10/10 mg/L for BOD5 and TSS respectively as well as a significant reduction in pathogens prior to disposal.

For the purposes of this development, L&M Engineering has only considered viable methods for onsite sewage treatment and disposal that involve Type 1 treatment system options that are consistent with typical installations in the region.

4.5. SEWAGE SYSTEM RECOMMENDATIONS

Based on the Northern Health Guidelines for Subdivision, the sizing of the absorption field areas is to be based upon a typical 4-bedroom home daily design flow of 1,600 L/day. The recommended methods of onsite sewage treatment and disposal to support the proposed 4-lot residential subdivision include:

Primary Recommendation

- Lots 1, 2 Type 1 Treatment Subgrade Gravity Distribution System
 - Can be applied to high permeability soils and sufficient vertical separation to a water table or restrictive layer.
 - Consist of a septic tank and subgrade trenches.
 - o Dimensions:
 - System contour length = 18m
 - Loading area = 48.6m²
- Lot 3 Type 1 Treatment 60cm Raised Bed Pressurized Disposal System with Timed Dosing
 - Can be applied to sites with low permeable soils and minimal vertical separation to a water table or restrictive layer.
 - Consist of a septic tank, pump tank, and an above-grade specified sand disposal bed.
 - o Dimensions:
 - System contour length = 40m
 - Sand loading area = 36m²
 - Basal area = 108m²

- Lot 4 Type 1 Treatment At-Grade Pressurized Disposal System with Timed Dosing
 - Can be applied to semi-permeable soils and sufficient vertical separation to a water table or restrictive layer.
 - Consist of a septic tank, pump tank, and an at-grade specified sand disposal bed.
 - o Dimensions:
 - System contour length = 30m
 - Sand loading area = 60m²

Alternatives

- Lot 1, 2, 4 Type 1 Treatment 45cm Raised Bed Pressurized Disposal System with Timed Dosing
- Lot 1, 2 Type 1 Treatment At-Grade Pressurized Disposal System with Timed Dosing

An example of a suitable onsite sewage treatment and disposal system for the proposed lots is shown on drawing 001 in Appendix B to demonstrate serviceability.

The general system arrangements shown are based on a typical 4-bedroom dwelling and only examples and are not intended for construction nor are they intended to be restrictive in future development plans. Additional verification in order to implement these options will be necessary as the soil profile is highly variable on the subject property and is dependent on future building plans and lot arrangements.

Property owners are required to have a Qualified Professional submit a site-specific design and Sewerage System Record application to the Health Authority for acceptance prior to receiving a building permit. Prior to building occupancy and use of the sewage system, a Letter of Certification from a Qualified Professional must be submitted and accepted by the Health Authority in accordance with the Sewerage System Regulation of British Columbia.

5.0 DISCLOSURE

The recommendations made in this report are generalized for a proposed single-family dwelling on a 0.9 ha or larger as demonstrated on the drawings. Detailed onsite sewage system design is required and shall be specific to future home development in accordance with the SSR and current regulations.

The contents of this report are presented for the exclusive use of Deanna Steward, the Ministry of Transportation and Infrastructure, and the Peace River Regional District. Any use, reliance on, or decisions made based on the contents of the report by third parties are the responsibility of such third parties. L&M Engineering Limited accepts no liability or responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this study.

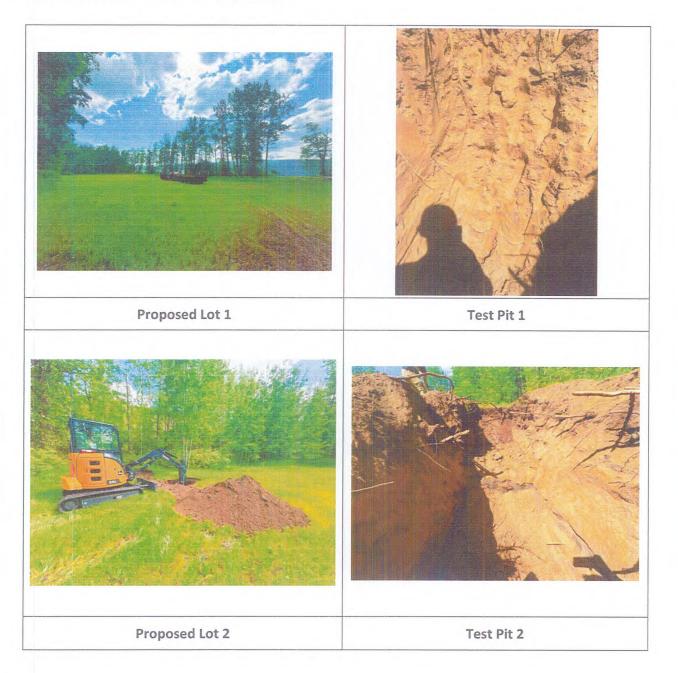
The information and data contained within this document represent L&M Engineering Limited's professional judgment in accordance with the knowledge and information available to L&M Engineering Limited at the time of the report preparation. No other warranty, expressed or implied.

If you have any questions regarding the contents of this report, please feel free to contact the undersigned directly.

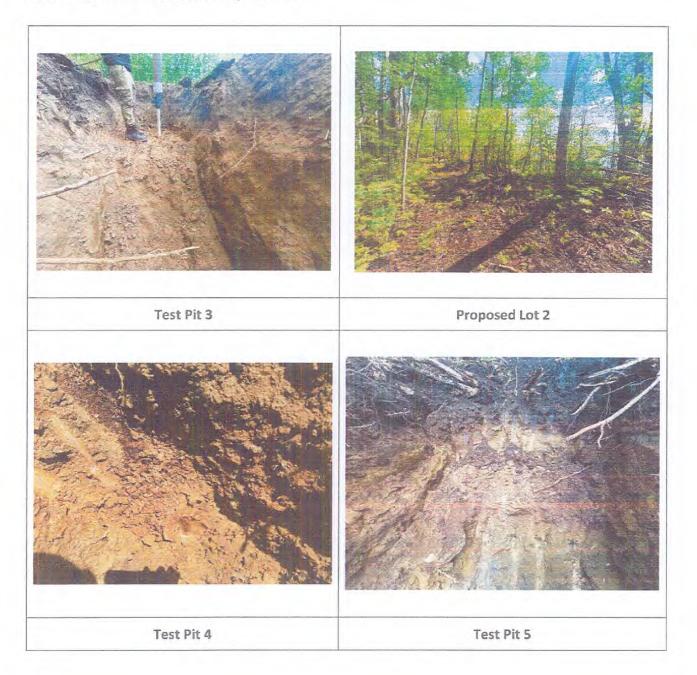
L&M ENGINEERING LIMITED

Prepared by:

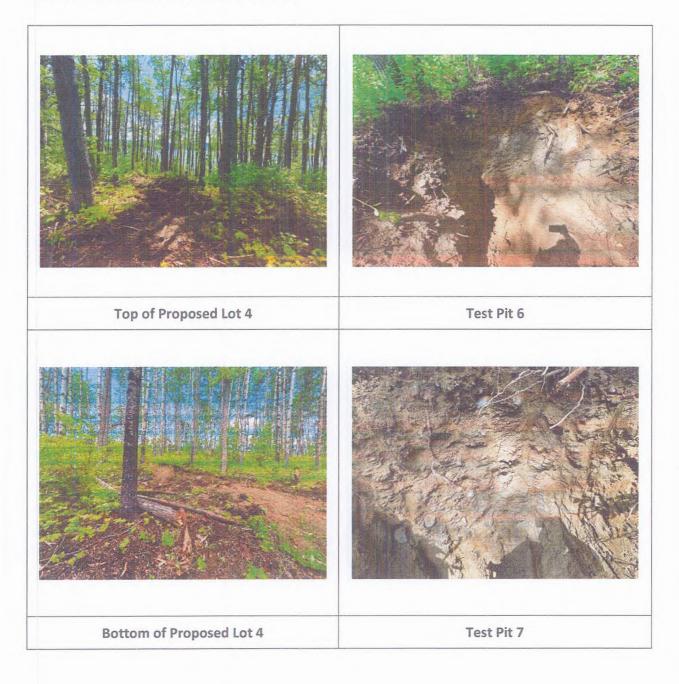
Nioma El-fatihi, Civil Eng. Assistant Reviewed by:

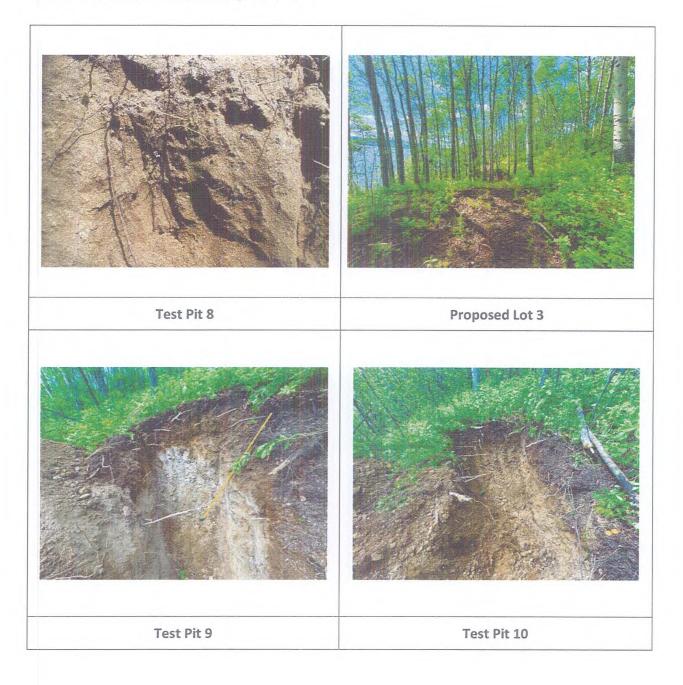


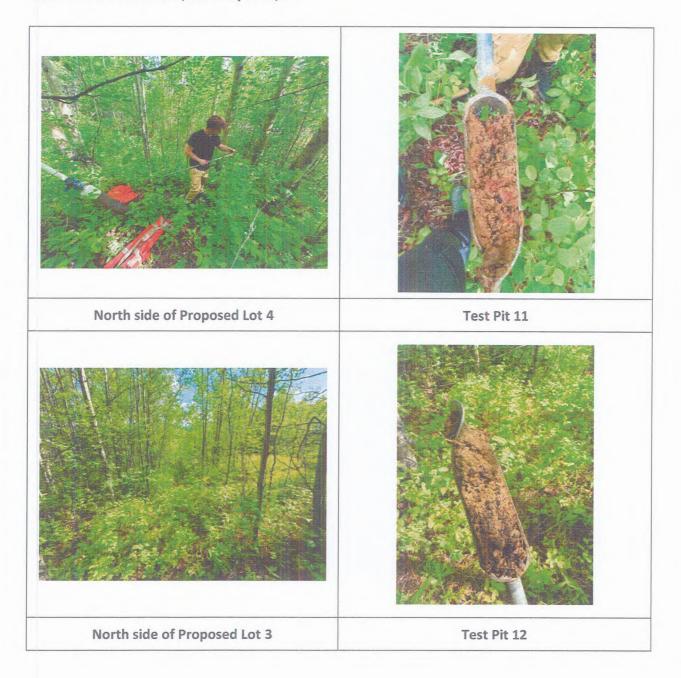
Jamie Schenkeveld, P.Eng. Principal

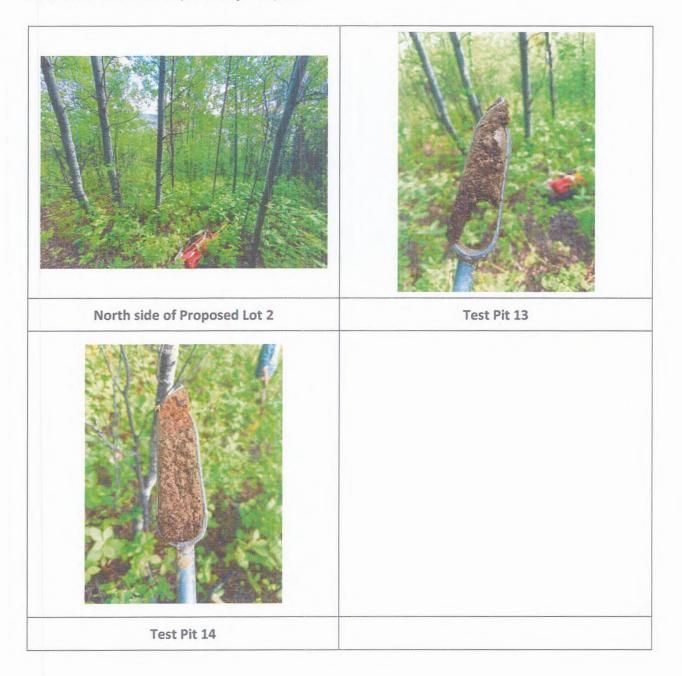

G:\/UOB FILES\1900\1913 - DEANNA STEWARD\01 - 5889 E. CENTENNIAL ROAD, MOBERLY LAKE\3 - DESIGN\2 - REPORT\1913-01 SUBDIVISION SUITABILITY REPORT.DOCX

L&M Engineering Limited


Appendix A: Onsite Sewage Evaluation Data




Client: Deanna Steward Job: 1913-01 District Lot 1889 Peace River Land District Except Plan PGP17392 5889 E. Centennial Road, Moberly Lake, BC



C.

Date: 2024-06-18 File No.: 1913-01 Client Deanna Steward Subject Location: 5889 E. Centennial Rd Weather: Sunny Completed By: Nioma El-fatihi

 TP #:
 1
 Slope:
 0
 to
 5%
 All direction

 Description:

 <t

	Depth	n (cm)	TEXTURE	TEXTURE	TEXTURE	CE	C.F. STRUCTURE CONSISTENCE COLOR MOTTLE			S ROOTS		OTS	
	From	То		0.1.	TYPE	GRADE	CONSISTENCE	COLON	QUANTITY	SIZE	CONTRAST	QUANTITY	SIZE (mm)
1	0	25	Organic soil	5%	N/A	N/A	Dry	Light brown	None	N/A	N/A	Plenty	5-30
2	25	50	Fine Silty Sand	0%	Angular, Blocky	Moderate	Dry	Light brown	None	N/A	N/A	None	N/A
3	50	65	Silty Sand with Gravel	20%	Angular, Blocky	Moderate	Dry	Light brown	None	N/A	N/A	None	N/A
4	65	180	Sandy Silt Trace Clay	10%	Structureless	Weak	Dry	Light brown	None	N/A	N/A	None	N/A
	Re		features (mottling/gleying): Ground water table:	> 1.8 m									
		Seaso	Ground water table: : nal or Parched Water Table: : Restrictive horizon: :	> 1.8 m									

 TP #:
 2
 Slope:
 0
 to
 5%
 All direction

 Description:

 <t

	Depth	n (cm)	TEVTUDE	C.F.	STRUCT	URE	CONSISTENCE	COLOR		MOTTLE	5	RO	OTS
	From	То	TEXTURE	C.F.	TYPE	GRADE	CONSISTENCE	COLOK	QUANTITY	SIZE	CONTRAST	QUANTITY	SIZE (mm)
1	0	20	Organic Soil	5%	N/A	N/A	Dry	Dark brown	None	N/A	N/A	Plenty	5-30
2	20	50	Silty Sand	20%	Platy	Weak	Dry	Brown	None	N/A	N/A	Some	5-10
3	50	70	Gravelly Sand	50%	Granular	Weak	Dry	Black- gray	None	N/A	N/A	None	N/A
4	70	110	Sandy Loam	10%	Structureless	Strong	Friable	Light brown	None	N/A	N/A	None	N/A
5	110	170	Sandy Loam with Gravel	30%	Granular	Weak	Dry	Black- gray	None	N/A	N/A	None	N/A
	Re		features (mottling/gleying): Ground water table: nal or Parched Water Table: Restrictive horizon:	> 1.70 m > 1.70 m									

 TP #:
 3
 Slope:
 0
 to
 5%
 All direction

 Description:

 <t

	Dept	n (cm)			STRUC	TURE				MOTTLE	S	RO	OTS
	From	То	TEXTURE	C.F.	ТҮРЕ	GRADE	CONSISTENCE	COLOR	QUANTITY	SIZE	CONTRAST	QUANTITY	SIZE (mm)
1	0	15	Organic Soil	N/A	N/A	N/A	Dry	Black- brown	None	N/A	N/A	Some	5-20
2	15	70	Sand with Coarse Gravel	40%	Structured	Moderate	Dry	Brown	None	N/A	N/A	None	N/A
3	70	100	Sand with Gravel	30%	Structured	Moderate	Dry	Brown	None	N/A	N/A	None	N/A
4	100	180	Clayey Sand	5%	Structured	Moderate	Dry	Brown	None	N/A	N/A	None	N/A
	Re	doximorphic	: features (mottling/gleying): 1	No									
			Ground water table: > onal or Parched Water Table: > Restrictive horizon: >	> 1.80 m > 1.80 m									

TP #:	4	Slope:	5	to	10%	N to S
Description:						

	Depth	n (cm)	TEXTURE	C.F.	STRUC	TURE	CONSISTENCE	COLOR		MOTTLE	5	RO	OTS
	From	То	TEXTURE	C.F.	TYPE	GRADE	CONSISTENCE	COLOR	QUANTITY	SIZE	CONTRAST	QUANTITY	SIZE (mm)
1	0	30	Organic Soil	N/A	N/A	N/A	Dry	Brown	None	N/A	N/A	Plenty	5-40
2	30	120	Clay Till	30%	Angular, Blocky	Strong	Dry, Firm	Brown	None	N/A	N/A	None	N/A
_													
	Re		atures (mottling/gleying Ground water table Il or Parched Water Table Restrictive horizor	e: ~ 0.30m e: ~ 0.30m									

Date: 2024-06-18 File No.: 1913-01 Client Deanna Steward Subject Location: 5889 E. Centennial Rd Weather: Sunny Completed By: Nioma El-fatihi

 TP #:
 5
 Slope:
 0
 to
 5%
 All direction

 Description:

 <t

	Dept	n (cm)	TEVELDE	0.5	STRU	CTURE				MOTTLE	S	RO	OTS
	From	То	TEXTURE	C.F.	TYPE	GRADE	CONSISTENCE	COLOR	QUANTITY	SIZE	CONTRAST	QUANTITY	SIZE (mm)
1	0	20	Organic Soil	N/A	N/A	N/A	Dry	Dark brown	None	N/A	N/A	Plenty	5-40
2	20	80	Sand Trace Silt with Gravel	15%	Platy	Strong	Dry, Firm	Brown	None	N/A	N/A	None	N/A
3	80	160	Sandy Silt with Gravel	5%	Platy	Moderate	Dry, Firm	Brown	None	N/A	N/A	None	N/A
	Re		features (mottling/gleying): Ground water table: nal or Parched Water Table: Restrictive horizon: :	> 1.60 m > 1.60 m									

Date: 2024-06-18 File No.: 1913-01 Client Deanna Steward Subject Location: 5889 E. Centennial Rd Weather: Sunny Completed By: Nioma El-fatihi

TP #:	6	Slope:	10	to	15%	N to S
Description						

	Depth	(cm)	TEXTURE	C.F.	STRUCT	TURE	CONSISTENCE	COLOR		MOTTLE	S	RO	OTS
	From	То	TEATORE	С.Г.	TYPE	GRADE	CONSISTENCE	COLOR	QUANTITY	SIZE	CONTRAST	QUANTITY	SIZE (mm)
1	0	20	Organic Soil	N/A	N/A	N/A	Dry	Black- brown	None	N/A	N/A	Plenty	5-20
2	20	70	Silty Sand Trace Clay	20%	Structured	Weak	Moist, Firm	Brown- orange	None	N/A	N/A	None	N/A
3	70	180	Sandy Silt	5%	Structured	Weak	Dry, Friable	Brown	None	N/A	N/A	None	N/A
	Re		features (mottling/gleying): Ground water table: nal or Parched Water Table: Restrictive horizon:	> 1.80 m > 1.80 m	1	1]	

 TP #:
 7
 Slope:
 15
 to
 20%
 All direction

 Description:

 <

	Depth	n (cm)	TEXTURE	C.F.	STRUC	TURE	CONSISTENCE	COLOR		MOTTLE	S	RO	OTS
	From	То	TEATORE	С.г.	ТҮРЕ	GRADE	RADE	COLOR	QUANTITY	SIZE	CONTRAST	QUANTITY	SIZE (mm)
1	0	30	Organic Soil	N/A	N/A	N/A	Moist	Black- brown	None	N/A	N/A	Some	5-20
2	30	200	Sandy Silt Loam	15%	Granular	Moderate	Dry, Friable	Brown	None	N/A	N/A	None	N/A
_													
	Da	device enclose f											
	Re		eatures (mottling/gleying): Ground water table: al or Parched Water Table: Restrictive horizon:	> 2.00 m > 2.00 m									

Date: 2024-06-18 File No.: 1913-01 Client Deanna Steward Subject Location: 5889 E. Centennial Rd Weather: Sunny Completed By: Nioma El-fatihi

TP #:	8	Slope:	15	to	20%	N to S
Description						

	Depth	n (cm)	TEXTURE	C.F.	STRUC	TURE	CONSISTENCE	COLOR		MOTTLES	5	RO	OTS
	From	То	TEXTORE	G.F.	TYPE	GRADE	CONSISTENCE	COLOR	QUANTITY	SIZE	CONTRAST	QUANTITY	SIZE (mm)
1	0	25	Organic Soil	N/A	N/A	N/A	Dry	Black- brown	None	N/A	N/A	Plenty	5-30
2	25	60	Sandy Loam with Gravel	10%	Granular	Weak	Moist	Brown	None	N/A	N/A	None	N/A
3	60	110	Fine Silty Sand	15%	Granular	Weak	Dry	Brown	None	N/A	N/A	None	N/A
4	110	130	Sand with Gravel	35%	Granular	Moderate	Dry	Brown	None	N/A	N/A	None	N/A
5	130	190	Fine Silty Sand	5%	Granular	Weak	Dry	Brown	None	N/A	N/A	None	N/A
	Re		features (mottling/gleying): f Ground water table: a nal or Parched Water Table: a Restrictive horizon: a	> 1.90 m > 1.90 m									

Date: 2024-06-18 File No.: 1913-01 Client Deanna Steward Subject Location: 5889 E. Centennial Rd Weather: Sunny Completed By: Nioma El-fatihi

 TP #:
 9
 Slope:
 10
 to
 15%
 All direction

 Description:

 <

	Depth	n (cm)	TEXTURE	C.F.	STRUC	TURE	CONSISTENCE	COLOR		MOTTLE	S	RO	OTS
	From	То		C.T.	TYPE	GRADE	CONSISTENCE	COLOR	QUANTITY	SIZE	CONTRAST	QUANTITY	SIZE (mm)
1	0	30	Organic Soil	N/A	N/A	N/A	Dry	Black- brown	None	N/A	N/A	Some	5-20
2	30	90	Clay Till Trace Sand	20%	Granular	Weak	Dry	Brown- orange	None	N/A	N/A	None	N/A
3	90	160	Clay Till	15%	Platy	Moderate	Dry	Brown	None	N/A	N/A	None	N/A
	Pe	dovimorobic	features (mottling/gleying):	No									
	Re		Ground water table: al or Parched Water Table: Restrictive horizon:	> 1.60 m > 1.60 m									

Date: 2024-06-18 File No.: 1913-01 Client Deanna Steward Subject Location: 5889 E. Centennial Rd Weather: Sunny Completed By: Nioma El-fatihi

TP #:	10	Slope:	10	to	15%	All direction
Description	1:					

	Depth	(cm)	TEXTURE	TEXTURE	TEXTURE	C.F.	STRUCTURE		CONSISTENCE	COLOR		MOTTLE	S	ROOTS	
	From	То		C.F.	TYPE	GRADE	CONSISTENCE	COLON	QUANTITY	SIZE	CONTRAST	QUANTITY	SIZE (mm)		
1	0	20	Organic Soil	N/A	N/A	N/A	Dry	Black- brown	None	N/A	N/A	Some	5-20		
2	20	70	Clay Till	25%	Blocky	Moderate	Dry, Firm	Brown- orange	None	N/A	N/A	None	N/A		
	Re	doximorphic fe	eatures (mottling/gleying Ground water table												
		Seasona	al or Parched Water Table Restrictive horizon	e: > 1.80 m											

 \square

Date: 2024-06-18 File No.: 1913-01 Client Deanna Steward Subject Location: 5889 E. Centennial Rd Weather: Sunny Completed By: Nioma El-fatihi

TP #:	11	Slope:	15	to	20%	N to S
Description:						

					PROFIL	E DESCRIP	TION								
	Depth	ı (cm)	TEXTURE	TEXTURE	TEXTURE	C.F.	STRUCTURE		CONSISTENCE	COLOR		MOTTLE	S	RO	OTS
	From	То			TYPE	GRADE	CONSISTENCE	COLON	QUANTITY	SIZE	CONTRAST	QUANTITY	SIZE (mm)		
1	0	15	Organic Soil	N/A	N/A	N/A	Dry	Black- brown	None	N/A	N/A	Some	5-20		
2	15	50	Silty Clay	10%	Structured	Moderate	Moist, Firm	Brown	None	N/A	N/A	None	N/A		
	Re		eatures (mottling/gleying) Ground water table al or Parched Water Table Restrictive horizon	: > 0.50 m : > 0.50 m											

 \cap

Date: 2024-06-18 File No.: 1913-01 Client Deanna Steward Subject Location: 5889 E. Centennial Rd Weather: Sunny Completed By: Nioma El-fatihi

 TP #:
 12
 Slope:
 15
 to
 20%
 All direction

 Description:

	Depth	(cm)	TEXTURE	TEXTURE	C.F.	STRUCTURE		CONSISTENCE	COLOR		MOTTLE	S	RO	OTS
	From	То		C.F.	TYPE	GRADE	CONSISTENCE	COLOR	QUANTITY	SIZE	CONTRAST	QUANTITY	SIZE (mm)	
1	0	10	Organic Soil	N/A	N/A	N/A	Dry	Black- brown	None	N/A	N/A	Some	5-20	
2	10	50	Structured Clay	5%	Blocky	Moderate	Moist	Brown	None	N/A	N/A	None	N/A	
3	50	60	Silty Clay	15%	Structured	Moderate	Moist	Brown	None	N/A	N/A	None	N/A	
	Re		eatures (mottling/gleying): Ground water table: al or Parched Water Table: Restrictive horizon:	> 1.60 m > 1.60 m										

Date: 2024-06-18 File No.: 1913-01 Client Deanna Steward Subject Location: 5889 E. Centennial Rd Weather: Sunny Completed By: Nioma El-fatihi

 TP #:
 13
 Slope:
 15
 to
 20%
 All direction

 Description:

	Depth	n (cm)	TEXTURE	TEVTUDE	TEVTUDE	0.5	STRUCTURE		CONSISTENCE	COLOR	MOTTLES			RO	OTS
	From	То		C.F.	TYPE	GRADE		COLOR	QUANTITY	SIZE	CONTRAST	QUANTITY	SIZE (mm)		
1	0	15	Organic Soil	N/A	N/A	N/A	Dry	Black- brown	None	N/A	N/A	Some	5-20		
2	15	45	Silty Loam	10%	Structured	Weak	Dry	Brown	None	N/A	N/A	None	N/A		
	Re		eatures (mottling/gleying) Ground water table al or Parched Water Table	: > 0.45 m									1		

Date: 2024-06-18 File No.: 1913-01 Client Deanna Steward Subject Location: 5889 E. Centennial Rd Weather: Sunny Completed By: Nioma El-fatihi

 TP #:
 14
 Slope:
 20
 to
 25%
 All direction

 Description:

		1	1		CTDUG	71105			1	MOTTIC			OTC			
		n (cm)	TEXTURE	TEXTURE	TEXTURE	TEXTURE	C.F.	STRUC		CONSISTENCE	COLOR	MOTTLES			ROOTS	
	From	То			TYPE	GRADE			QUANTITY	SIZE	CONTRAST	QUANTITY	SIZE (mm)			
1	0	20	Organic Soil	N/A	N/A	N/A	Dry	Black- brown	None	N/A	N/A	Some	5-20			
2	20	45	Silty Loamy Clay	< 5%	Structured	Moderate	Moist	Brown	None	N/A	N/A	None	N/A			
	Re		features (mottling/gleying): Ground water table: Ial or Parched Water Table: Restrictive horizon:	> 0.45 m > 0.45 m												

Auger Hole #:	5	PERM Inputs Outputs	EAMETE	<u>R TEST</u>	Date: 2023-06-05 File No.: 1913-01 Client: Deanna Steward Subject Location: 5889 E. Centennial Rd Weather: Overcast Completed By: Nioma El-fatihi
AH Diameter: nput Soil type (4,3,2) Clay liner=1	the summaries of the su	75 (mm) 3		Test Location	
Total Elapsed Min	Interim Time (Min)	Mater	Drop in Level (mm)	Rates of fall (mm/min)	Remarks of Observations
	0	489			Soil Description
1	1	486	3	3	Sandy Silt
2	1	474	12	12	
3	1	467	7	7	
4	1	462	5	5	
5	1	458	4	4	
7	2	453	5	2.5	
8	1	448	5	5	
9	1	444	4	4	
10	1	439	5	5	
11	1	434	5	5	
ote (5min to 30min typical duration to	stabilize)			Stable rate	Soil factor Kfs (mm/day)
alculated Soil field saturated hydraulic nput depth from bottom of test hole to	conductivity Kfs (mm		ım)	(mm/min) 5.3	X 56.4 = 2 mm Alt Shallow layer Kfs = 1
14	~	1	Rate of fall	vs time	
Rate of fall (mm/mfn) 9 8 01		*			*****
*				516	
2		Tin	ne (mín)	**	

4" Permeameter	Soll Factors t	o use in the c	alculation of	the Kis with th	e Loivi Engin	eering Limit	ed 4" permeamete	21
AH Diameter (cm)	7	7.5	8	9	10	11	12	13
Coarce & gravely Sand (4)	73.0	69.8	67.0	61.9	57.6	53.9	50.7	47.8
Structured Loams + Clay (med & fine sand) (3)	58.9	56.4	54.1	50.1	46.7	43.7	41.1	38.8
Unstructured Clay (2)	36.3	34.9	33.6	31.4	29.5	27.8	26.3	25.0
AH Diameter (cm)	14	15	16	18	20	22	24	26
Coarce & gravely Sand (4)	45.2	43.0	40.9	37.3	34.3	31.7	29.5	27.5
Structured Loams + Clay (med & fine sand) (3)	36.8	35.0	33.3	30.5	28.1	26.0	24.2	22.7
Unstructured Clay (2)	23.9	22.8	21.9	20.2	18.8	17.6	16.5	15.6

Results based on a constant water depth of

Results based on a permeameter reservoir inside diameter of

20 cm 10.23 cm

		PERM	EAMETE	RTEST	Date: 2024-06-18
ENGINEERING LIMITED		Inputs Outputs			File No.: 1913-01 Client: Deanna Steward Subject Location: 5889 E. Centennial Rd
Auger Hole #: AH Depth: AH Diameter:		2) (mm) i (mm)			Weather: Overcast Completed By: Nioma El-fatihi
Input Soil type (4,3,2) Clay liner=1	1 4			Test Location	n: TP2 @ 50cm bench
Total Elapsed Min	Interim Time (Min)	Water Level Reading (mm)	Drop in Level (mm)	Rates of fall (mm/min)	Remarks of Observations
	0	298			Soil Description
1	1	271	27	27	Sand Trace Clay
2	1	258	13	13	
3	1	238	20	20	
4	1	221	17	17	
5	1	206	15	15	
6	1	191	15	15	
7	1	176	15	15	
Note (5min to 30min typical duration to stabilize				Stable rate (mm/min)	Soil factor Kfs (mm/day)
Calculated Soil field saturated hydraulic conducti nput depth from bottom of test hole to shallow			ım)	17.0	X 56.4 = 9 mm Alt Shallow layer Kfs = 1
30 25 E 20		1	Rate of fall	vs time	

 10
 10
 10
 10
 10

 5
 0
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

AH Diameter (cm)	7	7.5	8	9	10	11	12	13
Coarce & gravely Sand (4)	73.0	69.8	67.0	61.9	57.6	53.9	50.7	47.8
Structured Loams + Clay (med & fine sand) (3)	58.9	56.4	54.1	50.1	46.7	43.7	41.1	38.8
Unstructured Clay (2)	36.3	34.9	33.6	31.4	29.5	27.8	26.3	25.0
AH Diameter (cm)	14	15	16	18	20	22	24	26
	14 45.2	15 43.0	16 40.9	18 37.3	20 34.3	22 31.7	24 29.5	
Coarce & gravely Sand (4)								
AH Diameter (cm) Coarce & gravely Sand (4) Structured Loams + Clay (med & fine sand) (3) Unstructured Clay (2)	45.2	43.0	40.9	37.3	34.3	31.7	29.5	27.5

Results based on a permeameter reservoir inside diameter of

10.23 cm

		Inputs Outputs	EAMETE	<u>R TEST</u>	Date: 2023-06-05 File No.: 1913-01 Client: Deanna Steward Subject Location: 5889 E. Centennial Rd
Auger Hole #: AH Depth: AH Diameter:	second	(mm) (mm)			Weather: Overcast Completed By: Nioma El-fatihi
nput Soil type (4,3,2) Clay liner=1	3			Test Location:	TP#3 @ 70cm bench
Total Elapsed Min	Interim Time (Min)	Water Level Reading (mm)	Drop in Level (mm)	Rates of fall (mm/min)	Remarks of Observations
0		179			Soil Description
1	1	172	7	7	Clayey Sand
2	1	165	7	7	
3	1	158	7	7	
4	1	151	7	7	
5	1	144	7	7	
6	1	139	5	5	
7	1	134	5	5	
8	1	132	2	2	
9	1	129	3	3	
				Stable rate	
Note (5min to 30min typical duration to s Calculated Soil field saturated hydraulic of nput depth from bottom of test hole to si	onductivity Kfs (mm/d		m)	(mm/min) 5,4	Soil factor Kfs (mm/day) X 56.4 am Alt Shallow layer Kfs =
8		1	Rate of fall	vs time	
2 Rate of fall (mm/min) 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	* *	K		~	*
2 Rate of					

Time (min)

4" Permeameter Soil Factors to use in the calculation of the Kfs with the L&M Engineering Limited 4" per	ermeameter
--	------------

AH Diameter (cm)	7	7.5	8	9	10	11	12	13
Coarce & gravely Sand (4)	73.0	69.8	67.0	61.9	57.6	53.9	50.7	47.8
Structured Loams + Clay (med & fine sand) (3)	58.9	56.4	54.1	50.1	46.7	43.7	41.1	38.8
Unstructured Clay (2)	36.3	34.9	33.6	31.4	29.5	27.8	26.3	25.0
All Dispersion (and)	14	15	16	18	20	22	24	26
AH Diameter (cm)		15						27.5
Coarce & gravely Sand (4)	45.2	43.0	40.9	37.3	34.3	31.7	29.5	27.5
Structured Loams + Clay (med & fine sand) (3)	36.8	35.0	33.3	30.5	28.1	26.0	24.2	22.7
Unstructured Clay (2)	23.9	22.8	21.9	20.2	18.8	17.6	16.5	15.6
Results based on a constant water depth of			20	cm				

Results based on a constant water depution Results based on a permeameter reservoir inside diameter of

			PERM Inputs Outputs	EAMETE	<u>R TEST</u>	Sub	Date: 202 File No.: 191: Client: Dear ject Location: 5889	3-01 nna Steward
Auger Hole #: AH Depth: AH Diameter:		and the second second second	(mm) (mm)				Weather: Ove ompleted By: Nior	rcast
Input Soil type (4,3,2) Clay lin	ier=1	3			Test Location	n: TP#4	@ Grade	
Total Elapsed Mi	n	nterim Time (Min)	Water Level Reading (mm)	Drop in Level (mm)	Rates of fall (mm/min)	Re	marks of Observa	tions
0			434				Soil Description	1
1		1	431	3	3		Clay Till	
2		1	430	1	1			the state of the state of the state
3		1	427	3	3			
4		1	425	2	2			
5		1	419	6	6			
6		1	414	5	5			
7		1	411	3	3			
8		1	407	4	4			
9		1	403	4	4			
10		1	400	3	3			
					Stable rate			
Note (5min to 30min typical durat Calculated Soil field saturated hyd Input depth from bottom of test h	raulic conductivity Kf			m)	(mm/min) 3.4		56.4 =	Kfs (mm/day) 19 N
7			ş	Rate of fall	vs time			
6 (e: 5			/					
Rate of fall (mm/min)			/				*	
1 1		2						
0			Tim	e (min)				
0	2	4	1		5	8	10	12

4" Permeameter Soil Factors to use in the calculation of the Kfs with the L&M Engineering Limited 4" permeameter

· · · · · · · · · · · · · · · · · · ·	501110000151	o ave in the s	2010010101011 01	arres reres miteri en		Bern Bann	coor portroottinge	
AH Diameter (cm)	7	7.5	8	9	10	11	12	13
Coarce & gravely Sand (4)	73.0	69.8	67.0	61.9	57.6	53.9	50.7	47.8
Structured Loams + Clay (med & fine sand) (3)	58.9	56.4	54.1	50.1	46.7	43.7	41.1	38.8
Unstructured Clay (2)	36.3	34.9	33.6	31.4	29.5	27.8	26.3	25.0
AH Diameter (cm)	14	15	16	18	20	22	24	26
Coarce & gravely Sand (4)	45.2	43.0	40.9	37.3	34.3	31.7	29.5	27.5
Structured Loams + Clay (med & fine sand) (3)	36.8	35.0	33.3	30.5	28.1	26.0	24.2	22.7
Unstructured Clay (2)	23.9	22.8	21.9	20.2	18.8	17.6	16.5	15.6
Results based on a constant water denth of			20	cm				

Results based on a constant water depth of

Results based on a permeameter reservoir inside diameter of

0 cm 10.23 cm

			PERM	EAMETE	R TEST			
Auger Hole #:	TED	500	Inputs Outputs			Subject L	Date: 2023 File No.: 1913 Client: Dean ocation: 5889 Veather: Over eted By: Niom	-01 na Steward E. Centennial I cast
AH Diameter:		And in case of the second s	(mm)			oompi	eted by. Nom	
nput Soil type (4,3,	2) Clay liner=1	a la			Test Location	TP#5 @ 600	cm bench	
Total	Elapsed Min	Interim Time (Min)	Water Level Reading (mm)	Drop in Level (mm)	Rates of fall (mm/min)		s of Observal	ions
	0		315			A 12 YO M TO DO TO THE REAL PROPERTY AND ADDRESS OF THE PARTY OF THE PARTY. THE PARTY OF THE PARTY. THE PARTY OF THE PARTY	I Description	
	1	1	308	7	7	Silty S	and with Gra	vel
	2	1	302	6	6			
	3	1	296	6	6			
	4	1	289	7	7			
	5	1	284	5	5			
	7	1	279	5	5			
	8	1	273	6	6			
	9	1	267	6	6			
I. State								
			-					
ote (5min to 30min	typical duration to stabilize)		1		Stable rate	Soil factor		Kfs (mm/day
	turated hydraulic conductivi	ty Kfs (mm/d	=		(mm/min) 6.0	X 56.4	=	
	om of test hole to shallow re			m)	the state of the s	mm Alt Shallow I	A.c.	
paracptinnom bott		Surreiteraye					ayer nis	
8				Rate of fall	vs time			
7	*							
		-						
(nim/mm) 2 4	*	*				/	- MA	*
1/m 5						×		
5 4								
100								
of fal								
late of fa								
Rate of fa								
2 Rate of fa				an (mir)				
Rate of fa	1 2	3	Tin 4	ne (min)	5 6	7	8	9

4" Permeameter	Soil Factors to use in the calculation of the Kfs with the L&M Engineering Limited 4" permeameter								
AH Diameter (cm)	7	7.5	8	9	10	11	12	13	
Coarce & gravely Sand (4)	73.0	69.8	67.0	61.9	57.6	53.9	50.7	47.8	
Structured Loams + Clay (med & fine sand) (3)	58.9	56.4	54.1	50.1	46.7	43.7	41.1	38.8	
Unstructured Clay (2)	36.3	34.9	33.6	31.4	29.5	27.8	26.3	25.0	
AH Diameter (cm)	14	15	16	18	20	22	24	26	
Coarce & gravely Sand (4)	45.2	43.0	40.9	37.3	34.3	31.7	29.5	27.5	
Structured Loams + Clay (med & fine sand) (3)	36.8	35.0	33.3	30.5	28.1	26.0	24.2	22.7	
Unstructured Clay (2)	23.9	22.8	21.9	20.2	18.8	17.6	16.5	15.6	
Posults based on a constant water denth of			20	cm					

Results based on a constant water depth of Results based on a permeameter reservoir inside diameter of

20 cm 10.23 cm

ENGINEERI Auger Hole AH Depth: AH Diamete				Inputs Outputs	EAMETE	<u>R TEST</u>	Date: 2023-06-05 File No.: 1913-01 Client: Deanna Steward Subject Location: 5889 E. Centennial Rd Weather: Overcast Completed By: Nioma El-fatihi
nput Soil ty	ype (4,3,2) Clay liner=1	i.	3			Test Location:	TP#6 @ grade
	Total Elapsed Min		nterim Time (Min)	Water Level Reading (mm)	Drop in Level (mm)	Rates of fall (mm/min)	Remarks of Observations
		0		416			Soil Description
	1		1	408	8	8	Silty Sand Trace Clay
	2		1	399	9	9	
	3		1	392	7	7	
	4		1	385	7	7	
	5		1	379	6	6	
0.10	6		1	372	7	7	
	7		1	367	5	5	
	8		1	362	5	5	
	9		1	355	7	7	
	10		1	350	5	5	
alculated So	to 30min typical duration to stabi oil field saturated hydraulic condu from bottom of test hole to shallo	ictivity Kf		r (50-400 m			X 56.4 = 3 Mm Alt Shallow layer Kfs =
	10			F	ate of fall	vs time	
	9						
	8						
min)	7	×		-			*
/mu	6			*		1	
Rate of fall (mm/min)	5					×	×
of f	4						
Rate	3						
	2						
	1			T:	e (min)		
	0			1100	e (mm)		

4" Permeameter Soil Factors to use in the calculation of the Kfs with the L&M Engineering Limited 4" permeameter

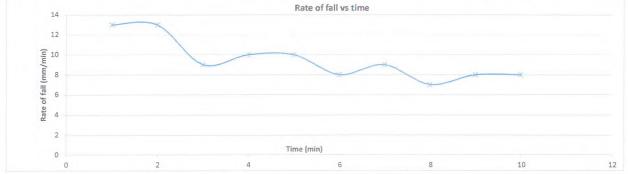
AH Diameter (cm)	7	7.5	8	9	10	11	12	13
Coarce & gravely Sand (4)	73.0	69.8	67.0	61.9	57.6	53.9	50.7	47.8
Structured Loams + Clay (med & fine sand) (3)	58.9	56.4	54.1	50.1	46.7	43.7	41.1	38.8
Unstructured Clay (2)	36.3	34.9	33.6	31.4	29.5	27.8	26.3	25.0
AH Diameter (cm)	14	15	16	18	20	22	24	26
Coarce & gravely Sand (4)	45.2	43.0	40.9	37.3	34.3	31.7	29.5	27.5
Structured Loams + Clay (med & fine sand) (3)	36.8	35.0	33.3	30.5	28.1	26.0	24.2	22.7
Unstructured Clay (2)	23.9	22.8	21.9	20.2	18.8	17.6	16.5	15.6
Results based on a constant water depth of			20	cm				

Results based on a permeameter reservoir inside diameter of

^{10.23} cm

ENGINEERING	LIMITED
Auger Hole #:	
AH Depth:	
AH Diameter:	

PERMEAMETER TEST


Inputs
Outouts
a solution

7

300 (mm)

Date: 2023-06-05 File No.: 1913-01 Client: Deanna Steward Subject Location: 5889 E. Centennial Rd Weather: Overcast Completed By: Nioma El-fatihi

ut Soil type (4,3,2) Clay liner=1 Total Elapsed Min	Interim Time (Min)	Water Level Reading (mm)	Drop in Level (mm)	Rates of fall (mm/min)		TP#7 @ 50cr	s of Observ	ations
0		205				Soil	Descriptio	n
1	1	192	13	13		San	dy Silt Loai	m
2	1	179	13	13				
3	1	170	9	9				
4	1	160	10	10				
5	1	150	10	10				
6	1	142	8	8				
7	1	133	9	9				
8	1	126	7	7				
9	1	118	8	8				
10	1	110	8	8				
								1
e (5min to 30min typical duration to stabil	ize)	<u> </u>		Stable rate (mm/min)		Soil factor		Kfs (mm/day)
ulated Soil field saturated hydraulic condu		ay) =		9.5	Х	56.4	=	
t depth from bottom of test hole to shallo			m)		mm	Alt Shallow la	ver Kfs =	

4" Permeameter Soil Factors to use in the calculation of the Kfs with the L&M Engineering Limited 4" permeameter

AH Diameter (cm)	7	7.5	8	9	10	11	12	13
Coarce & gravely Sand (4)	73.0	69.8	67.0	61.9	57.6	53.9	50.7	47.8
Structured Loams + Clay (med & fine sand) (3)	58.9	56.4	54.1	50.1	46.7	43.7	41.1	38.8
Unstructured Clay (2)	36.3	34.9	33.6	31.4	29.5	27.8	26.3	25.0
AH Diameter (cm)	14	15	16	18	20	22	24	26
Coarce & gravely Sand (4)	45.2	43.0	40.9	37.3	34.3	31.7	29.5	27.5
Structured Loams + Clay (med & fine sand) (3)	36.8	35.0	33.3	30.5	28.1	26.0	24.2	22.7
Unstructured Clay (2)	23.9	22.8	21.9	20.2	18.8	17.6	16.5	15.6
Results based on a constant water depth of			20	cm				

Results based on a permeameter reservoir inside diameter of

10.23 cm

NGINEERING LIMITED		Inputs Outputs	EAMETE	NIEST	Date: 2023-06-05 File No.: 1913-01 Client: Deanna Steward Subject Location: 5889 E. Centennial Rd			
uger Hole #: H Depth: H Diameter: aput Soil type (4,3,2) Clay liner=1		(mm) (mm)		Test Location:	Weather: Overcast Completed By: Nioma El-fatihi TP#8 @ grade			
Total Elapsed Min	Interim Time (Min)	Water Level Reading (mm)	Drop in Level (mm)	Rates of fall (mm/min)	Remarks of Observations			
0		384			Soil Description			
1	1	379	5	5	Sandy Loam with Fine Gravel			
2	1	372	7	7				
3	1	366	6	6				
4	1	360	6	6				
5	1	354	6	6				
ote (5min to 30min typical duration to stabilize) alculated Soil field saturated hydraulic conductivit put depth from bottom of test hole to shallow res			m)	Stable rate (mm/min) 6.0	Soil factor Kfs (mm/day) X 56,4 m Alt Shallow laver Kfs =			

4" Permeameter	3011 1 401013 1	o use in the t	T	the Ris with th	-	Lund	ed 4" permeamete	
AH Diameter (cm)	7	7.5	8	9	10	11	12	13
Coarce & gravely Sand (4)	73.0	69.8	67.0	61.9	57.6	53.9	50.7	47.8
Structured Loams + Clay (med & fine sand) (3)	58.9	56.4	54.1	50.1	46.7	43.7	41.1	38.8
Unstructured Clay (2)	36.3	34.9	33.6	31.4	29.5	27.8	26.3	25.0
AH Diameter (cm)	14	15	16	18	20	22	24	26
Coarce & gravely Sand (4)	45.2	43.0	40.9	37.3	34.3	31.7	29.5	27.5
Structured Loams + Clay (med & fine sand) (3)	36.8	35.0	33.3	30.5	28.1	26.0	24.2	22.7
Unstructured Clay (2)	23.9	22.8	21.9	20.2	18.8	17.6	16.5	15.6

 Unstructured Clay (2)
 23

 Results based on a constant water depth of
 Results based on a permeameter reservoir inside diameter of

20 cm 10.23 cm

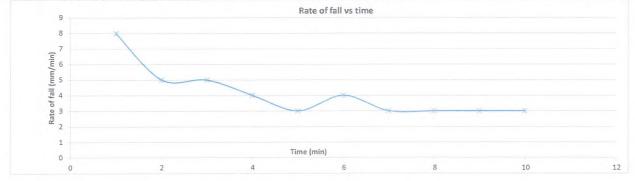
		Inputs Outputs	EAMETE	RIESI	Date: 2023-06-05 File No.: 1913-01 Client: Deanna Steward Subject Location: 5889 E. Centennial Rd		
Auger Hole #: AH Depth:		(mm)			Weather: Overcast Completed By: Nioma El-fatihi		
AH Diameter: nput Soil type (4,3,2) Clay liner=1	15	(mm)		Test Location	: TP#9 @ 30cm bench		
Total Elapsed Min	Interim Time (Min)	Water Level Reading (mm)	Drop in Level (mm)	Rates of fall (mm/min)	Remarks of Observations		
0		191			Soil Description		
1	1	188	3	3	Clay Till Trace Sand		
2	1	185	3	3			
3	1	182	3	3			
4	1	180	2	2			
5	1	179	1	1			
6	1	178	1	1			
7	1	177	1	1			
8	1	176	1	1			
Note (5min to 30min typical duration to				Stable rate (mm/min)	Soil factor Kfs (mm/day)		
Calculated Soil field saturated hydraulic on nput depth from bottom of test hole to s			im)	1.9	X 56.4 = 1 mm Alt Shallow layer Kfs =		
3.5		1	Rate of fall	vs time			
3 👻	×	*					
1.5 E 2.5							
2.5 2 1.5 0 0 1.5 1.5 1.5			X				
o of 1							

0.5 Time (min) 0 0 4 8 9

4" Permeameter	Soil Factors t	o use in the o	alculation of	the Kfs with th	e L&M Engin	eering Limit	ed 4" permeamet	er
AH Diameter (cm)	7	7.5	8	9	10	11	12	13
Coarce & gravely Sand (4)	73.0	69.8	67.0	61.9	57.6	53.9	50.7	47.8
Structured Loams + Clay (med & fine sand) (3)	58.9	56.4	54.1	50.1	46.7	43.7	41.1	38.8
Unstructured Clay (2)	36.3	34.9	33.6	31.4	29.5	27.8	26.3	25.0
						An <u>a 1999 (1999</u>)		
AH Diameter (cm)	14	15	16	18	20	22	24	26
Coarce & gravely Sand (4)	45.2	43.0	40.9	37.3	34.3	31.7	29.5	27.5
Structured Loams + Clay (med & fine sand) (3)	36.8	35.0	33.3	30.5	28.1	26.0	24.2	22.7
Unstructured Clay (2)	23.9	22.8	21.9	20.2	18.8	17.6	16.5	15.6
Results based on a constant water depth of			20	cm				

Results based on a permeameter reservoir inside diameter of

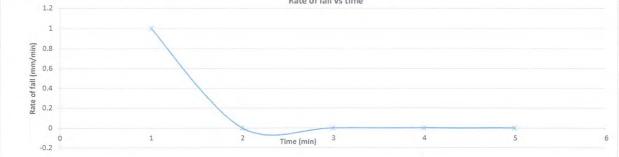
10.23 cm


PERMEAMETER TEST

Inputs

Date: 2023-06-05 File No.: 1913-01

ENGINEERING LIMITED		Outputs			Client: Deanna Steward Subject Location: 5889 E. Centennial Rd
Auger Hole #: AH Depth:	10 500)) (mm)			Weather: Overcast Completed By: Nioma El-fatihi
AH Diameter: Input Soil type (4,3,2) Clay liner=1	75	(mm)		Test Location:	Upper Lot 4 @ grade
Total Elapsed Min	Interim Time (Min)	Water Level Reading (mm)	Drop in Level (mm)	Rates of fall (mm/min)	Remarks of Observations
0		63			Soil Description
1	1	55	8	8	Silty Clay
2	1	50	5	5	
3	1	45	5	5	
4	1	41	4	4	
5	1	38	3	3	
6	1	34	4	4	
7	1	31	3	3	
8	1	28	3	3	
9	1	25	3	3	
10	1	22	3	3	

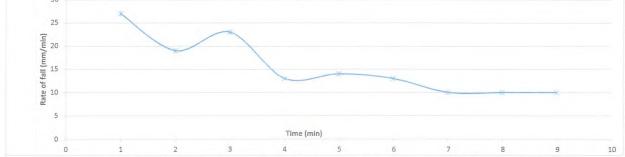


/	7.5	8	9	10	11	12	13
73.0	69.8	67.0	61.9	57.6	53.9	50.7	47.8
58.9	56.4	54.1	50.1	46.7	43.7	41.1	38.8
36.3	34.9	33.6	31.4	29.5	27.8	26.3	25.0
14	15	16	18	20	22	24	26
45.2	43.0	40.9	37.3	34.3	31.7	29.5	27.5
36.8	35.0	33.3	30.5	28.1	26.0	24.2	22.7
	58.9 36.3 14 45.2	73.0 69.8 58.9 56.4 36.3 34.9 14 15 45.2 43.0	73.0 69.8 67.0 58.9 56.4 54.1 36.3 34.9 33.6 14 15 16 45.2 43.0 40.9	73.0 69.8 67.0 61.9 58.9 56.4 54.1 50.1 36.3 34.9 33.6 31.4 14 15 16 18 45.2 43.0 40.9 37.3	73.0 69.8 67.0 61.9 57.6 58.9 56.4 54.1 50.1 46.7 36.3 34.9 33.6 31.4 29.5 14 15 16 18 20 45.2 43.0 40.9 37.3 34.3	73.0 69.8 67.0 61.9 57.6 53.9 58.9 56.4 54.1 50.1 46.7 43.7 36.3 34.9 33.6 31.4 29.5 27.8 14 15 16 18 20 22 45.2 43.0 40.9 37.3 34.3 31.7	73.0 69.8 67.0 61.9 57.6 53.9 50.7 58.9 56.4 54.1 50.1 46.7 43.7 41.1 36.3 34.9 33.6 31.4 29.5 27.8 26.3 14 15 16 18 20 22 24 45.2 43.0 40.9 37.3 34.3 31.7 29.5

Results based on a permeameter reservoir inside diameter of

		PERM	EAMETE	RTEST	
		Inputs Outputs			Date: 2023-06-05 File No.: 1913-01 Client: Deanna Steward Subject Location: 5889 E. Centennial Rd
Auger Hole #: AH Depth: AH Diameter:	and the second se) (mm) (mm)			Weather: Overcast Completed By: Nioma El-fatihi
nput Soil type (4,3,2) Clay liner=1	a a			Test Location:	Upper Lot 3 @ grade
Total Elapsed Min	Interim Time (Min)	Water Level Reading (mm)	Drop in Level (mm)	Rates of fall (mm/min)	Remarks of Observations
0		408			Soil Description
1	1	407	1	1	Structured Clay
2	1	407	0	0	
3	1	407	0	0	
4	1	407	0	0	
5		407	0	0	
lote (Smin to 30min typical duration to stabili	ze)			Stable rate (mm/min)	Soil factor Kfs (mm/day)
Calculated Soil field saturated hydraulic conduction of test hole to shallow	ctivity Kfs (mm/d	r (50-400 m		0.2	X 56.4 =
		1	Rate of fall	vs time	

4″ F	Perm	eam	eter
------	------	-----	------

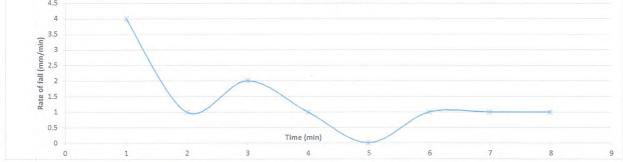

Soil Factors to	o use in the ca	alculation of	the Kfs with the	L&M Engine	eering Limit	ed 4" perme	eameter

AH Diameter (cm)	7	7.5	8	9	10	11	12	13
Coarce & gravely Sand (4)	73.0	69.8	67.0	61.9	57.6	53.9	50.7	47.8
Structured Loams + Clay (med & fine sand) (3)	58.9	56.4	54.1	50.1	46.7	43.7	41.1	38.8
Unstructured Clay (2)	36.3	34.9	33.6	31.4	29.5	27.8	26.3	25.0
			T T		1	,		
AH Diameter (cm)	14	15	16	18	20	22	24	26
Coarce & gravely Sand (4)	45.2	43.0	40.9	37.3	34.3	31.7	29.5	27.5
Structured Loams + Clay (med & fine sand) (3)	36.8	35.0	33.3	30.5	28.1	26.0	24.2	22.7
Unstructured Clay (2)	23.9	22.8	21.9	20.2	18.8	17.6	16.5	15.6
Results based on a constant water depth of			20	cm				

Results based on a permeameter reservoir inside diameter of

10.23 cm

		PERM	EAMETE	RTEST		
		Inputs Outputs			File No.: 2 Client: 0 Subject Location: 5	Deanna Steward 5889 E. Centennial Rd
Auger Hole #:	12				Weather: (
AH Depth: AH Diameter:) (mm) 5 (mm)			Completed By: r	Nioma El-fatihi
Input Soil type (4,3,2) Clay liner=1				Test Location	Upper Lot 2 @ grade	
Total Elapsed Min	Interim Time (Min)	Water Level Reading (mm)	Drop in Level (mm)	Rates of fall (mm/min)	Remarks of Obse	ervations
0		296			Soil Descript	tion
1	1	269	27	27	Silty Loan	า
2	1	250	19	19		
3	1	227	23	23		
4	1	214	13	13		
5	1	200	14	14		
6	1	187	13	13		
7	1	177	10	10		
8	1	167	10	10		
9	1	157	10	10		
				Stable rate		
Note (5min to 30min typical duration to Calculated Soil field saturated hydraulic		lay) =		(mm/min)	Soil factor X 56.4 =	Kfs (mm/day) 8
nput depth from bottom of test hole to	shallow restrictive laye	er (50-400 m	im)	1	mm Alt Shallow layer Kfs =	
30		I	Rate of fall	vs time		
25						
23						

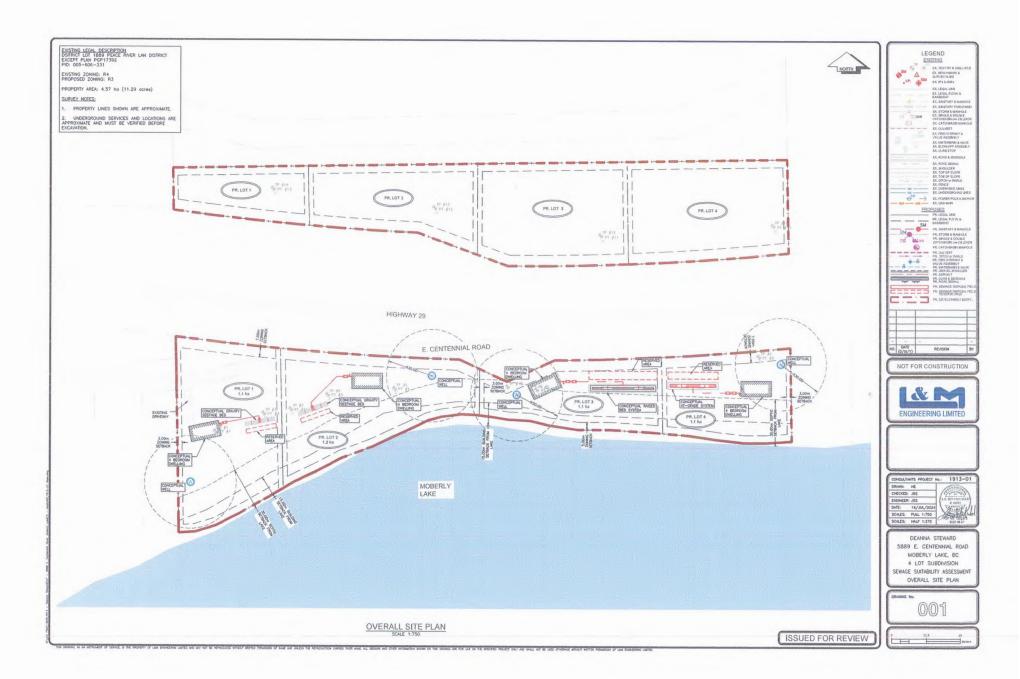

4" Permeameter	Soil Factors t	o use in the o	alculation of	the Kfs with th	e L&M Engin	eering Limit	ted 4" permeam	eter
AH Diameter (cm)	7	7.5	8	9	10	11	12	13
Coarce & gravely Sand (4)	73.0	69.8	67.0	61.9	57.6	53.9	50.7	47.8
Structured Loams + Clay (med & fine sand) (3)	58.9	56.4	54.1	50.1	46.7	43.7	41.1	38.8
Unstructured Clay (2)	36.3	34.9	33.6	31.4	29.5	27.8	26.3	25.0
AH Diameter (cm)	14	15	16	18	20	22	24	26
Coarce & gravely Sand (4)	45.2	43.0	40.9	37.3	34.3	31.7	29.5	27.5
Structured Loams + Clay (med & fine sand) (3)	36.8	35.0	33.3	30.5	28.1	26.0	24.2	22.7
Unstructured Clay (2)	23.9	22.8	21.9	20.2	18.8	17.6	16.5	15.6

 Unstructured Clay (2)
 23

 Results based on a constant water depth of
 Results based on a permeameter reservoir inside diameter of

20 cm 10.23 cm

ENGINEERING LIMITED		Inputs Outputs	EAMETE		Date: 2023-06-05 File No.: 1913-01 Client: Deanna Steward Subject Location: 5889 E. Centennial Rd
Auger Hole #: AH Depth: AH Diameter:		(mm) (mm)			Weather: Overcast Completed By: Nioma El-fatihi
nput Soil type (4,3,2) Clay liner=1	з			Test Location:	Upper Lot 1 @ grade
Total Elapsed Min	Interim Time (Min)	Water Level Reading (mm)	Drop in Level (mm)	Rates of fall (mm/min)	Remarks of Observations
0		45			Soil Description
1	1	41	4	4	Silty Loamy Clay
2	1	40	1	1	
3	1	38	2	2	
4	1	37	1	1	
5	1	37	0	0	
6	1	36	1	1	
7	1	35	1	1	
8	1	34	1	1	
Note (5min to 30min typical duration to stabilize)				Stable rate (mm/min)	Soil factor Kfs (mm/day)
Calculated Soil field saturated hydraulic conduction nput depth from bottom of test hole to shallow r			im)	1.4	X 56.4 = nm Alt Shallow layer Kfs =
4.5		1	Rate of fall	vs time	




AH Diameter (cm)	7	7.5	8	9	10	11	12	13
Coarce & gravely Sand (4)	73.0	69.8	67.0	61.9	57.6	53.9	50.7	47.8
Structured Loams + Clay (med & fine sand) (3)	58.9	56.4	54.1	50.1	46.7	43.7	41.1	38.8
Unstructured Clay (2)	36.3	34.9	33.6	31.4	29.5	27.8	26.3	25.0
Unstructured Clay (2)	36.3	34.9	33.6	31.4	29.5	27.8	26.3	25.0
Unstructured Clay (2) AH Diameter (cm)	36.3	34.9	33.6	31.4	29.5	27.8	26.3	25.0
							·	
AH Diameter (cm)	14	15	16	18	20	22	24	26

Results based on a permeameter reservoir inside diameter of

10.23 cm

Appendix B: Sewage Suitability Assessment Drawings

Planning Department FW: DL 1889 Rezone Application

From: Steward < Section 2, 2025 2:05 PM To: Ashley Murphey < <u>Ashley.Murphey@prrd.bc.ca</u>>; Adam Morton < <u>adam.morton@prrd.bc.ca</u>> Subject: DL 1889 Rezone Application

Hello Adam and Ashley

Re: DL 1889 Rezoning Application 24-006 ZN - Board Consideration

I am wanting to address a concern that was raised with regard to proposed floodplain areas within DL 1889.

You note that the present proposed location of Lots 1 & 2 septic systems may lie within floodplain areas as suggested by the recent PRRD Floodplain Identification and Flood Hazard Mapping.

Please note that the final locations and designs for the septic systems will comply with Northern Health Regulations. There were a multitude of percolation test holes drilled on the property with opportunity for several locations.

Please attach this note to the original proposal so that it may be considered at the PRRD Board Meeting Reading on February 20, 2025.

As well, if you could please acknowledge receipt of this email, that would be appreciated.

Thank you,

<u>Deanna Stewa</u>rd