

Dawson Creek Groundwater and Surface Water Impact Assessment

Peace River Regional District

24 October 2023

The Power of Commitment

Project n	ame	PRRD 2020 Closure Reports #04-2020									
Documer	nt title	Dawson Creek Gro	undwater and Su	ndwater and Surface Water Impact Assessment							
Project n	umber	11213132									
File name	9	11213132-RPT-14-	Dawson Creek G	roundwater and S	urface Water Ass	sessment DRB.do	сх				
Status	Revision Author Reviewer Approved for issue					issue					
Code			Name	Signature	Name	Signature	Date				
S4		David R. Barton	Rose Marie Rocca,	Rox Meri Ru.	Rose Marie Rocca,	Roellen Ru	Oct. 24, 2023				
[Status code]											
[Status											

GHD

Contact: David R Barton, Hydrogeologist in Training | GHD 138 East 7th Avenue, Suite 100 Vancouver, British Columbia V5T 1M6, Canada **T** +1 604 214 0510 | **F** +1 604 214 0525 | **E** info-northamerica@ghd.com | **ghd.com**

[Compliance statement]

© GHD 2023

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

i.

Contents

1.	Intro	duction	1
	1.1	Background	1
	1.2	Assessment Approach	1
	1.3	Regulatory Setting	2
2.	Field	Investigations	2
3.	Site F	Physical Setting	3
	3.1	Climate	3
	3.2	Site Topography and Drainage	3
	3.3	Site Geology	3
	3.4	Hydrogeology	3
	3.5	Estimated Leachate Generation Rate	4
4.	Wate	r Quality Monitoring	5
	4.1	Environmental Monitoring Program	5
	4.2	Groundwater Quality	6
		4.2.1 Background Groundwater Quality	6
		4.2.2 Leachate Quality and Quantity	6
		4.2.3 Groundwater Quality Impact Assessment	6
	4.3	Surface Water Quality	7
		4.3.1 Background Surface Water Quality	7
	4.4	Surface Water Quality Impact Assessment	7
5.	Conc	eptual Site Model	8
6.	Wate	r Balance Model	9
	6.1	Calculation Methodology and Key Inputs	10
		6.1.1 Area 1 – Upgradient of Landfill	10
		6.1.2 Area 2 – Landfill Footprint	11
		6.1.3 Area 3 – Downgradient	11
7.	Conc	lusions	12
8.	Reco	mmendations	13

Table index

Table 3.1	Site Hydraulic Conductivity Estimates	4
Table 3.2	HELP Model Leachate Generation Rates	5
Table 4.1	2018-2021 Groundwater Quality – Analytes Exceeding Applicable Water Quality Standards.	7
Table 4.2	2017-2021 Surface Water Quality – Analytes Exceeding Applicable Water Quality Standards	8

Figure index

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Climate Data
- Figure 4 Topography and Drainage
- Figure 5 Groundwater Flow Direction

Appendices

Appendix A	Borehole Logs
------------	---------------

- Appendix B HELP Model Inputs and Results
- Appendix C Analytical Results (2021 Annual Monitoring Report)
- Appendix D Historical groundwater and Surface Water Concentration Versus Time Plots (2021 Annual Monitoring Report)
- Appendix E Water Balance Model Calculations

1. Introduction

GHD has prepared the following Groundwater and Surface Water Assessment Report (Report) for the Peace River Regional District (PRRD) in support of the Dawson Creek Landfill (Site) closure. The location of the landfill is presented on Figure 1, a Site plan is presented on Figure 2.

1.1 Background

The Dawson Creek Landfill is located approximately 4 kilometres (km) east of the City of Dawson Creek. The landfill is located just south of Highway 49 and north of Dawson Creek.

Permit 2212 (permit) was first issued on October 7, 1974. The permit authorized the discharge of municipal solid waste to the landfill, animal refuse to a carcass pit, and the operation of controlled open burning for wood waste. The landfill was constructed over a historical meander of Dawson Creek, which is approximately 20 metres (m) thick and infilled with fluvial sand and gravel. Waste was placed from the pre-existing north bank of Dawson Creek near Highway 49 to the south towards the existing creek. In 1997, ownership of the landfill was transferred to the PRRD.

The landfill stopped receiving waste between 2000 and 2002. After closure, the Site continued to operate as a transfer station and waste was redirected to the Bessborough Landfill. Additionally, the Site received clean fill material until January 1, 2020. Historically, the clean fill was placed at the crest of the landfill and pushed down slope.

1.2 Assessment Approach

This assessment was undertaken to evaluate groundwater and surface water quality at the Site and assess any impacts related to landfill leachate migration to the receiving groundwater and surface water environments under existing conditions.

The purpose of the impact assessment is to support the conceptual design of the cover rehabilitation program, specifically to determine the level of design needed to reduce leachate generation and improve water quality within the receiving environments.

The following points describe the approach used to complete this assessment:

- The physical setting of the Site was investigated using historical stratigraphic logs. The physical setting is
 described in terms of subsurface geology and hydrogeology to define the presence and movement of
 groundwater through the subsurface.
- Groundwater and surface water quality outside the landfill footprint is characterized by samples collected from monitoring wells and surface water courses in the vicinity of the landfill. The sampling program includes the collection of groundwater and surface water samples from "background" locations.
- Leachate indicator parameters were selected based on historical Site groundwater and surface water quality data.
- The groundwater and surface water analytical results for the leachate indicator parameters were assessed and compared to background groundwater and upstream surface water quality to identify potential landfill-related water quality impacts.
- A conceptual Site model was developed to describe existing conditions, the Site physical setting, receptors, compliance locations, and how the Site interacts with the surrounding environment (i.e., pathways from contaminant source to receptor).
- A Hydrologic Evaluation Landfill Performance (HELP) model was created to estimate leachate generation rates and leachate impacted groundwater discharge to the receiving environment under existing conditions.
- Hydraulic monitoring data was used to prepare an annual water balance for the landfill. This water balance was prepared for the purposes of understanding the quantitative movement of groundwater through the Site.

 Assessment of risks to the receiving environment and potential engineered mitigation measures (e.g., low-permeable final cover).

1.3 Regulatory Setting

The appropriate groundwater standards to apply to the Site depend on the current and future groundwater and surface water uses and the potential for groundwater or surface water at the Site to flow to surface water bodies that support aquatic life.

The BC Ministry of Environment and Climate Change Strategy (ENV), formerly the BC MOE, document Protocol 21 for Contaminated Sites: Water Use Determination (Protocol 21) (ENV, 2020) provides the criteria for selecting the appropriate standards to apply to water quality results.

Based on GHD's experience and the guidance provided in Protocol 21, the BC Contaminated Sites Regulation (CSR) and Approved and Working Water Quality Guidelines (WQG) provide an appropriate benchmark for evaluating groundwater and surface water quality at the Site. The following describes the water quality standards that should be used to assess water quality at the Site moving forward and the rationale for using those standards.

Protocol 21 specifies that Aquatic Life (AW) standards apply to sites located within a 500 metre (m) radius of a surface water body. Dawson Creek is located approximately 50 m south of the Site. Therefore, CSR AW standards apply to groundwater at the Site.

To exclude the application of the Drinking Water (DW) standards from the Site, Protocol 21 indicates that there must be no groundwater wells used for drinking water purposes located with a 500 m radius from the Site, and there cannot be a viable aquifer on Site to protect future drinking water use. The Site is underlain primarily by glaciolacustrine clay and till which overly Aquifers 851 and 593. Aquifer 851 is a confined sand and gravel aquifer, and Aquifer 593 is a fractured sedimentary bedrock aquifer. Based on these observations, the CSR DW standards should conservatively apply to groundwater at the Site unless an additional hydrogeologic characterization demonstrates that the surficial soils act as an effective confining layer.

Analytical results for surface water samples are compared to the BC WQGs for the protection of drinking water (DW) and freshwater aquatic life (FWAL).

WQGs include both short term minimum/maximum (STM) (instantaneous) and long-term average (LTA) (30 day mean) guidelines and may apply to dissolved or total parameter concentrations. The long-term average (LTA) guidelines are generally more stringent than the short-term minimum/maximum (STM) guidelines. WQGs are also often dependent on background conditions, hardness, chloride, calcium pH, and/or temperature.

Based on the surface water sampling frequency and methodology conducted at the Site, STM WQGs for total concentrations apply.

2. Field Investigations

Field investigations to assess existing conditions at the landfill were completed by GHD in May 2020 and September 2022. During the Site visits, the following observations were made:

- Slope inclinometers are present on Site.
- Loose soil mounds were found at the landfill plateau.
- Uncompacted cover soil with no vegetation was found at the top of the west side slope of the landfill.
- Ponded surface water was found at the southwest toe of the landfill.
- Visual evidence of differential settlement was observed including a large crack at the toe of slope along the west side of the landfill and sloughing on the south landfill side slope.

- Scattered litter such as scrap metal and concrete were observed at the west side of the landfill.
- Exposed waste was observed at the southeast side slope of the landfill.
- Exposed geosynthetics observed on southwest slope.

3. Site Physical Setting

3.1 Climate

The climate of the Dawson Creek area is characterized by mild, wet summers and cold, dry winters. According to the data collected at the Dawson Creek Airport weather station (Climate ID 1182285), which is located approximately 1 km south of the Site and is in the same biogeoclimatic zone (Boreal White and Black Spruce) as the landfill, the area receives on average 453.2 millimetres (mm) of precipitation per year (307.2 mm is rainfall and 172.2 cm is snowfall). Precipitation is highly seasonal with 62% of total annual precipitation occurring from May to September. The daily average temperature is 1.9 degrees Celsius (°C) and ranges from -13.2 °C in January to 15.5 °C in July. The 1981 to 2010 Canadian Climate Normals data recorded at the Dawson Creek A climate station is presented on Figure 3.

3.2 Site Topography and Drainage

Topography and drainage features are shown on Figure 4. The Site slopes to the south from an elevation of approximately 650 metres above mean sea level (m AMSL) in the northern portion of Site to approximately 630 m AMSL in the southern portion of the Site. Regional topography near the Site slopes towards Dawson Creek.

Precipitation falling onto the landfill either infiltrates into the subsurface or flows as overland runoff. Runoff either flows down the landfill side slopes in a west-southwest direction toward Dawson Creek or is captured by the runoff collection ditches constructed around the perimeter of the landfill. The collection ditches discharge clean stormwater to the southeast corner of the Site.

3.3 Site Geology

Based on the results of previous drilling investigations, overburden geology underlying the Site can be described as glaciolacustrine deposits of laminated to massive clay associated with a former glacial lake and glacial till. Sand and gravel were encountered within a historical, cut off, meander of Dawson Creek. Historical photography shows that the cutoff meander, present in 1964, is in a horseshoe shape beneath the landfill footprint.

Bedrock was encountered in the northwest area of Site at a depth of approximately 29.5 metres below ground surface (mbgs). Bedrock is of the Kaskapau Formation of the Smokey Group and is Upper Cretaceous in age. The Kaskapau Formation is characterized by fine clastic sedimentary rock, including mudstones, siltstones, and shale. Available historical borehole logs are presented in Appendix A.

3.4 Hydrogeology

Two regional aquifers underly the Site as identified by iMapBC. Aquifer 851 is a confined overburden aquifer comprised of glacial sand and gravel deposits. This aquifer has moderate productivity and low vulnerability and is overlain by a confining layer of low porosity clay. Precipitation and infiltration from surface water bodies are the primary source of recharge for this aquifer. Aquifer 593 is a bedrock aquifer comprised primarily of shale with some sandstone of the Kaskapau Formation. Aquifer 593 has moderate vulnerability and productivity.

Five monitoring wells (MW) are installed within the overburden at the Site. Wells DC-98-5 and DC-BH101 are located upgradient to the north of the landfill and well DC-95-2 is located cross-gradient to the east. Wells DC-98-1 and DC-98-3 are located downgradient to the southeast and southwest, respectively. Well DC-98-1 was installed within sand

and gravel of the old creek meander of Dawson Creek. Other wells were installed within the glaciolacustrine clay and till deposits. Waste was placed on top of clay and clay till (AECOM, 2012).

Hydraulic conductivity testing was completed at Site monitoring wells by AGRA earth and Environmental (AGRA) in 1999, a summary of the hydraulic conductivity estimates is presented in Table 3.1, below. The hydraulic conductivities at the Site range between 3 x 10^{-9} m/sec in the high plasticity clay to 1 x 10^{-4} m/sec in the gravel of the old creek meander at DC-98-1. Based on the high hydraulic conductivity measured at DC-98-1, the cut off meander of Dawson Creek likely provides a preferential pathway for leachate migration directly to Dawson Creek.

Location	Stratigraphy	Hydraulic Conductivity (m/sec)	Reference
DC-BH101	Clay	5 x 10 ⁻⁹	(Matrix Solutions, 2018)
DC-95-1	Clay and Clay Till	1 x 10 ⁻⁷	(AGRA Earth and
DC-98-5	Clay Till	5 x 10 ⁻⁶	Environmental, 1999)
DC-98-2	Clay w sand	5 x 10 ⁻⁷	
DC-98-1	Gravel Layer	1 x 10 ⁻⁴	
MP99-1A	High Plastic Clay	3 x 10 ⁻⁸	
MP99-1B	High Plastic Clay	3 x 10 ⁻⁹	
MP99-2	High Plastic Clay	3 x 10 ⁻⁹	

 Table 3.1
 Site Hydraulic Conductivity Estimates

Based on the groundwater elevation data provided in annual reports for the Site, the depth of shallow groundwater ranges from approximately 10 to 14 mbgs (at wells DC-98-5 and DC-BH101 to the north) and 1 to 2 mbgs (at well DC-95-1 near Dawson Creek). Elevations of shallow groundwater ranges from approximately 643 m AMSL to the north, to approximately 630 m AMSL to the south. Groundwater elevations to the south are similar to elevations in Dawson Creek. Local groundwater flows to the south, following local topography and towards Dawson Creek.

For reference, the 2021 water level data (2021 Annual Monitoring Report, Matrix Solutions Inc.) are provided in Appendix C (Table 5a).

A horizontal groundwater flow velocity in the clay and clay till is estimated to range from 0.01 to 22 metres per year (m/yr). Based on a horizontal gradient of 0.05 m/m (average 2021 groundwater elevations at DC-BH101 and DC-98-3), a range of hydraulic conductivity values between of 5×10^{-6} m/sec (DC-98-5) and 3×10^{-9} (MP99-1B and MP99-2) and an estimated effective porosity of 0.35 representative of clay till (Spitz & Moreno, 1966). Using a geometric mean hydraulic conductivity of 6.4 x 10^{-8} m/sec, a horizontal groundwater flow velocity of 0.29 m/year is estimated.

Groundwater monitoring wells and flow direction are presented on Figure 5.

3.5 Estimated Leachate Generation Rate

Leachate generation at the landfill was estimated using the HELP model. To estimate an overall leachate generation rate for the landfill, leachate generation was modeled for both the landfill plateau and side slopes. Leachate generation was assumed to be the rate at which leachate percolated through the clay till underlying the landfill.

Leachate generation was modeled for two scenarios: the first model assumed a low permeability cover (1.0 x 10⁻⁹ m/sec), representing properly moisture-conditioned and compacted cover material with minimal deterioration; and the second model assumed a medium permeability cover (1.0 x 10⁻⁷ m/sec), representing a conservative estimate for the effective permeability of the existing cover at the Landfill. Both scenarios potentially conform to the landfill cover material requirements set out in the 2016 BC Landfill Criteria for Municipal Solid Waste (Criteria).

The HELP model inputs are summarized below, and leachate generation rates calculated from the HELP models are presented in Table 3.2, below. The estimated leachate generation rates reported in the 2012 Dawson Creek Landfill

Hydrogeologic Assessment (AECOM, 2012) are presented in Table 3.2 for comparison. As summarized below, the results of the medium permeability cover are generally comparable to previous estimates made by AECOM. It is recommended that test pitting and soil sampling be completed to accurately determine hydraulic conductivity and thickness of landfill cover.

Leachate generation rates estimated by GHD and HELP model inputs and results are presented in Appendix B.

HELP Model Assumptions/Inputs:

Slopes:	27% side slopes; 1% plateau
Topsoil Thickness:	15 cm
Cover thickness:	60 cm
Cover hydraulic conductivity:	1.0 x 10 ⁻⁹ m/sec (Low permeability)
Cover hydraulic conductivity:	1.0 x 10 ⁻⁷ m/sec (Medium permeability)
Landfill Plateau area:	3.125 Hectares (Ha)
Landfill Side Slopes Area:	3.125 Ha
Total Landfill Area:	6.25 Ha

Table 3.2 HELP Model Leachate Generation Rates

HELP Model Simulation	Precipitation (m ³ /year)	Leachate Generation Rate (m ³ /year)	Runoff (m³/year)	Evapotranspiration (m³/year)
AECOM, 2012 (Low Rate)	28,892	3,285	-	-
AECOM, 2012 (High Rate)	28,892	6,242	-	-
GHD, 2023 (Low Permeability)	28,892	631	6,368	21,902
GHD, 2023 (Medium Permeability)	28,892	5,197	5,107	18,597

4. Water Quality Monitoring

4.1 Environmental Monitoring Program

The purpose of the water quality monitoring program is to characterize groundwater and surface water quality at the Site and assess water quality impacts resulting from landfill leachate migration. Groundwater quality is assessed at four monitoring locations located upgradient, cross-gradient, and downgradient of the landfill waste footprint. The following groundwater monitoring wells are included in the current environmental monitoring program:

- DC-BH101 (Upgradient)
- DC-95-2 (Cross-Gradient)
- DC-19-1 (Downgradient)
- DC-98-1 (Downgradient)

Surface water quality is assessed at four monitoring locations located upstream, midstream, and downstream of the landfill. The following surface water monitoring locations are included in the current environmental monitoring program:

- DC-SW6 (Upstream)
- DC-SW4 (Midstream)

- DC-SW2 (Midstream)
- DC-SW7 (Downstream)

The locations of the groundwater monitoring wells and surface water monitoring locations are illustrated on Figure 5. Appendix C, Table 5a (2021 Annual Monitoring Report, Matrix Solutions Inc.) includes a summary of the well completion details where available.

Surface water monitoring location DC-SW4 is located on an oxbow adjacent to the main channel of Dawson Creek. Based on historical satellite imagery of the Site, the oxbow does not appear to have a perennial hydraulic connection to the main channel of Dawson Creek. Because this monitoring location does not represent surface water quality in Dawson Creek, it was not considered in this assessment.

The groundwater and surface water monitoring and sampling program were completed by SLR Consulting Ltd. Between 2015-2017, and by Matrix Solutions Inc. from 2018 to 2022.

As part of the monitoring program, groundwater, and surface water samples are collected and analyzed for a comprehensive list of field parameters, general chemistry, nutrients, metals, hydrogen sulfide, hydrocarbons and extractable petroleum hydrocarbons (EPH). The analytical results from the 2021 Annual Monitoring Report prepared by Matrix Solutions Inc. along with the selected comparative criteria are presented in Appendix C (Tables 5b – 5j). The groundwater samples have been compared to the CSR DW and AW criteria and the Surface Water samples have been compared to the WQG DW and FAW criteria. Historical concentrations of leachate indicator parameters and concentration trend analysis from the 2021 Annual Monitoring Report prepared by Matrix Solutions Inc. are presented in Appendix D.

4.2 Groundwater Quality

4.2.1 Background Groundwater Quality

Monitoring wells DC-BH101 is located immediately upgradient of the Landfill approximately 10 m northwest of the waste footprint. DC-BH101 is screened within till/clay unit. Based on the location of this well and historical water quality, it is considered to be representative of background groundwater quality that has not been affected by landfill related impacts. Elevated concentrations of groundwater analytical parameters observed at DC-BH101 are interpreted to be representative of natural conditions and/or impacts from off-Site related activities occurring upgradient of the Site.

4.2.2 Leachate Quality and Quantity

Matrix Solutions Inc. determined that data documenting leachate concentrations beneath the Site is not available. Leachate indicator parameters for the landfill are assumed to be sodium, chloride, sulphate, boron, iron, and manganese based on leachate water quality from other landfills in the Peace River Regional District.

4.2.3 Groundwater Quality Impact Assessment

Impacts to groundwater from landfill leachate are clearly apparent at the downgradient monitoring wells, where concentrations of leachate indicator parameters chloride and boron (Appendix C) are observed at significantly higher levels than in upgradient and cross-gradient groundwater. Concentrations of ammonia, arsenic, cobalt, iron, and manganese are also observed at significantly higher levels in downgradient groundwater than in upgradient and cross-gradient groundwater.

A summary of the analytical parameters reported at concentrations in excess of their applicable groundwater quality standards between 2018 and 2021 are presented in Table 4.1, below. Please note that the exceeding parameters listed below are summarized from the historical reports prepared by others.

Table 4.1	2018-2021 Groundwater Quality – Analytes Exceeding Applicable Water Quality Standards.
10016 4.1	2010-2021 Oroundwater Quanty - Analytes Exceeding Applicable Water Quanty Standards

Year	DC-BH101 (Upgradient)	DC-95-2 (Cross-Gradient)	DC-19-1 (Downgradient)	DC-98-1 (Downgradient)
2018	Na, SO4, Li, Sr, U,	Na, SO ₄ , S ²⁻ as H ₂ S, Co, Li, Sr		Na, Cl, SO₄, NH₃-N, As, Co, Fe, Li, Mn, Sr
2019	Na, SO4, Li, Sr, U,	Na, SO4, Co, Li, Mn, Sr	Na, Cl, Co, Li, Mn, Sr, U	Na, Cl, NH3-N, As, Co, Fe, Li, Mn, Sr
2020	Na, SO₄, Li, Sr, U	Na, SO₄, Co, Li, Mn, Sr	Na, Cl, SO₄, Co, Li, Mn, Sr, U	Na, Cl, SO ₄ , NH ₃ -N, S ²⁻ as H ₂ S, As, Co, Fe, Mn
2021	Na, SO₄, Li, Sr, U	Na, SO4, Co, Li, Mn, Sr	Na, SO₄, Co, Li, Mn, Sr, U	Na, Cl, NH3-N, As, Co, Fe, Li, Mn, Sr

Notes:

-- - data not collected

** - no analytes in sample exceeded both applicable standards and background concentrations.

Criteria applied: BC CSR: AW and DW; BC WQG: AW, DW, WW, IW, and LW

It should be noted that the concentrations of sodium, sulphate, lithium, and strontium at the background well are frequently higher than concentrations reported at the cross-gradient DC-95-2 and downgradient well DC-19-1. Concentrations of lithium and strontium are occasionally higher in background when compared to DC-98-1. As shown above the number of parameters in excess of their applicable standards is greater at the downgradient most monitoring well. DC-98-1 is screened within the cut off meander of Dawson Creek and provides worst-case landfill impacts.

Based on the historical data, concentrations of leachate indicator parameters in downgradient groundwater appear to have been stable for several years. These observations indicate that while impacts to groundwater from landfill leachate are present, and resulting in exceedances of applicable groundwater quality standards, they do not appear to be worsening.

While groundwater quality concentrations have stabilized, it is recommended that monitoring and reporting continue to ensure that groundwater quality remains at current concentrations or decrease over time.

4.3 Surface Water Quality

4.3.1 Background Surface Water Quality

Surface water monitoring location DC-SW6 is located in the main channel of Dawson Creek approximately 200 m upstream of the landfill waste footprint. Based on the location of this monitoring location and historical water quality results, it is considered to be representative of upstream surface water quality that has not been affected by landfill related impacts. Background surface water quality in Dawson Creek is known to be impacted by the wastewater treatment plant, which is located upstream from the landfill and contributes a large proportion of surface water flow to the creek (AECOM, 2012). Elevated concentrations of surface water analytical parameters observed at DC-SW6 are interpreted to be representative of natural conditions and/or impacts from the wastewater treatment plant.

4.4 Surface Water Quality Impact Assessment

Based on the historical surface water quality data (Appendix C), impacts to surface water quality in Dawson Creek from landfill leachate appear to be present but limited. Concentrations of chloride, sulphate, chromium, iron, and manganese have generally been similar, or higher in concentration at the upstream monitoring location (DC-SW6) compared to the mid- and downstream locations (DC-SW2 and DC-SW7). Concentrations of these parameters exceed BC WQGs at the upstream monitoring location. This indicates that the elevated concentrations of these parameters in surface water are related to activities upstream of the landfill.

Concentrations of sodium and boron show seasonal variations, with elevated concentrations observed at the mid- and downstream locations relative to background surface water, indicating that leachate impacted groundwater is likely discharging to Dawson Creek during the summer and fall. Based on the historical data and trend analyses completed by Matrix (Matrix, 2022) (Appendices C and D), concentrations of boron and sodium in Dawson Creek are well below the BC WQGs and show no overall increasing trend.

The midstream (SW2) and downstream (SW7) surface water monitoring points are located downstream of the confluence of the former meander and Dawson Creek. Water quality at these points are good representatives of worst-case leachate impacted groundwater discharging to Dawson Creek. As described above, the landfill is having some influence on surface water quality but is not significant in comparison to upstream impacts. Thus, worst-case groundwater discharge is not having a significant influence on surface water quality.

SLR reported that the landfill contributes less than 0.1% to stream flow in Dawson Creek and accounts for 0.08% to 0.54% mass loading to the stream (SLR, 2018). Reported exceedances of the applicable surface water quality standards between 2017 and 2021 are presented in Table 4.2.

Year	DC-SW6 (Upstream)	DC-SW2 (Midstream)	DC-SW7 (Downstream)		
2017	Conductivity, total dissolved solids, sulphide, faecal coliforms, aluminum, chromium, iron, manganese,	Conductivity, total dissolved solids, sulphide, faecal coliforms, aluminum, beryllium, chromium, iron, manganese	Conductivity, total dissolved solids, faecal coliforms, chromium, manganese		
2018	Temperature, field pH, field dissolved oxygen, chloride, total phosphorous, iron, e.coli	Field pH, field dissolved oxygen, lab pH, e.coli	Field pH, field dissolved oxygen, lab pH, chloride, ammonia-nitrogen, total phosphorous,		
2019	Temperature, chloride, ammonia- nitrogen, total phosphorous, iron, faecal coliforms	Temperature, chloride, nitrite- nitrogen, total phosphorous, faecal coliforms	Temperature, field dissolved oxygen, chloride, nitrite-nitrogen, total phosphorous, faecal coliforms		
2020	Temperature, field dissolved oxygen, ammonia-nitrogen, total phosphorous, iron, faecal coliforms	Chloride, ammonia-nitrogen, total phosphorous, iron	Temperature, ammonia-nitrogen, total phosphorous		
2021	Temperature, chloride, sulphide, total phosphorus, cobalt, iron, manganese, faecal coliforms	Temperature, field dissolved oxygen, chloride, ammonia- nitrogen, total phosphorus, arsenic, cobalt, iron, manganese	Chloride, ammonia-nitrogen, total phosphorus, cobalt, iron, manganese		

Table 4.2 2017-2021 Surface Water Quality – Analytes Exceeding Applicable Water Quality Standards

5. Conceptual Site Model

Based on the available regional and Site-specific information, the following Conceptual Site model has been developed:

- The Site is located south of highway 49 and immediately north of Dawson Creek. The Site slopes to the south towards Dawson Creek.
- The landfill received municipal solid waste and animal waste between 1974-2002 and received clean fill until 2020. The Site now operates as a transfer station.
- Groundwater elevations measured at monitoring wells across the Site indicate that groundwater flow is to the south toward Dawson Creek.
- The surficial geology underlying the Site consists of glaciolacustrine deposits of laminated to massive clay and glacial till which act as a barrier to groundwater migration.

- There is a historical cut off meander of Dawson Creek beneath the landfill footprint. The meander is characterized by sand and gravel and notably higher permeability and hydraulic conductivity than the surrounding glaciolacustrine deposits. The meander is interpreted to be preferential pathway for leachate migration. Leachate generated in the landfill would preferentially flow through the more permeable sand and gravel and discharge into Dawson Creek.
- Leachate generation for the landfill under the existing conditions of the final cover is estimated to be between 631 to 5,197 m³ per year.
- Background groundwater quality at the Site (DC-BH101) is characterized by elevated concentrations of sodium, sulphate, lithium, strontium, and uranium which have been consistently observed at concentrations exceeding the applicable groundwater quality standards at the Site. The elevated concentrations of these parameters are interpreted to be representative of natural conditions and/or impacts resulting from off-Site activities upgradient of the landfill.
- Downgradient groundwater quality at the Site (DC-19-1 and DC-98-1 is characterized by elevated concentrations (i.e., elevated above background groundwater quality) of chloride, ammonia, H₂S, arsenic, boron, cobalt, iron, and manganese, which are interpreted to represent impacts from landfill leachate.
 - Monitoring well DC-98-1, is located within the Dawson Creek meander. Thus, water quality result represent worse-case migration of leachate impacts through the preferential pathway.
 - Concentration versus time plots show that groundwater impacts have been stable for a number of years.
- Surface water quality in Dawson Creek is affected by wastewater effluent from the wastewater treatment plant located upstream from the Site.
 - The midstream (SW2) and downstream (SW7) surface water monitoring points are located downstream of the confluence of the former meander and Dawson Creek. Water quality at these points are good representatives of worst-case leachate impacts discharging to Dawson Creek.
- A comparison between upstream, midstream, and downstream water quality shows that landfill is having some influence on water quality in Dawson Creek; however, concentrations of landfill derived analytes are not greater than BC WQG (sodium and boron). It is reported that the landfill contributes less than 0.1% to stream flow in Dawson Creek and accounts for 0.08% to 0.54% mass loading to the stream (SLR, 2018).

6. Water Balance Model

GHD developed a generalized water balance model to quantitatively estimate the movement of groundwater and leachate through the Site. In order to develop the water balance model, the Site was divided into three areas: upgradient of the landfill, the landfill footprint, and downgradient of the landfill. The following describes the water inputs and outputs considered for each of the three areas.

Area 1 – Upgradient of the Landfill

Area 1 represents the area directly north or upgradient of the landfill. Water input into Area 1 consists of the infiltration of precipitation and groundwater flow from further upgradient. Water output from Area 1 consists of groundwater flux through the glaciolacustrine deposits and beneath the landfill footprint.

Area 2 – Landfill Footprint

Area 2 represents the landfill footprint. The water inputs to Area 2 include groundwater flux from upgradient and infiltration of precipitation over the landfill footprint (i.e., leachate generation). The amount of infiltration into the landfill is based on existing conditions including landfill cover soil, vegetative coverage, evaporative zone depth, slope, and waste thickness. The rate of leachate generation was estimated using the HELP model as described in Section 3.5.

Water output from Area 2 consists of leachate impacted groundwater flux to Area 3 as well as evapotranspiration of precipitation falling onto the landfill mound. It is likely that much of the leachate flux from Area 2 would flow through the former Dawson Creek meander.

Area 3 – Downgradient

Area 3 represents the area downgradient of the landfill footprint. The water inputs to Area 3 include infiltration of precipitation, and flux from Area 2. Water output from Area 3 consists of discharge to Dawson Creek, runoff of precipitation into Dawson Creek, and evapotranspiration.

Dawson Creek Meander

Sand and gravel were encountered within the cut off meander of Dawson Creek. The hydraulic conductivities in the sand and gravel is estimated to be on the order of 1×10^{-4} m/sec (measured at DC-98-1). Based on the hydraulic conductivity, the old creek meander of Dawson Creek likely provides a preferential pathway for leachate migration directly to Dawson Creek. It is likely that leachate impacted groundwater from Area 2, discharges into the meander which is hydraulically connected to Dawson Creek; however, the horizontal groundwater velocity within the clay and clayey till material would limit discharge into the meander. Some infiltration of precipitation would occur into the meander which would further dilute impacts originating from Area 2. Because the receptor of groundwater discharge within the meander is still Dawson Creek, this area has not been considered separately from Area 3.

6.1 Calculation Methodology and Key Inputs

The following sections provide descriptions of the key methodologies and inputs used in creating the water balance model. Appendix E provides the detailed step-by-step calculations used in the model as well as the data used to complete those calculations. Simplified calculations are presented in each subsection.

6.1.1 Area 1 – Upgradient of Landfill

The groundwater flux flowing across the boundary of Area 1 can be calculated using Darcy's Law and is expressed by the following equation:

$$Q_1 = K \times A \times i$$

Where:

 Q_1 = flux or flow across the width of the landfill footprint within Area 1 (m³/year)

K = hydraulic conductivity (m/sec)

A = Cross-sectional area through which groundwater is flowing (m^2)

i = hydraulic gradient or change in hydraulic head over a distance (between DC-BH101 and DC-98-3) (m/m)

Where the cross-sectional area is calculated by the following:

$$A = L \times D$$

Where:

L = length of the landfill footprint which is perpendicular to groundwater flow (m)

D = the saturated thickness of the underlying aquifer (m)

Groundwater influx from Area 1 was estimated based on the following:

- An average horizontal gradient of 0.05 m/m. This value was calculated based on the May 19, July 14, and October 6, 2021, groundwater elevations measured at DC-BH101 and DC-98-3.
- The upgradient length of the landfill footprint which is perpendicular to groundwater flow is estimated to be approximately 256 m.
- The assumed saturated thickness of the aquifer underlying the landfill is estimated to be approximately 12 m based on the average 2021 observed groundwater elevation at DC-BH101 relative to the elevation of Dawson Creek.
- A geometric mean hydraulic conductivity of 6.4x10⁻⁸ m/sec based on the hydraulic conductivity estimates from MW95-1, MW98-5, MW98-2, MW99-1A/B, and MW99-2.

The groundwater flux from Area 1 (Q₁) entering Area 2 was calculated to be 300 m³ per year.

Calculations:

Detailed step-by-step calculations of the entire water balance, including the flux from Area 1, are included in Appendix E.

6.1.2 Area 2 – Landfill Footprint

A portion of the precipitation that falls onto the landfill infiltrates and generates leachate, which then mixes with groundwater and follows the natural groundwater flow direction. Leachate generation from the landfill footprint (Q₂) was estimated using the HELP Model described in Section 3.5.

Leachate generation under existing conditions was estimated to be between 631 and 5,197 m³ per year ($Q_{2 \text{ Low}}$ Permeability and $Q_{2 \text{ Medium Permeability}}$).

Outflow from Area 2 into Area 3 ($Q_3 = Q_1 + Q_2$) is estimated to be between 931 and 5,497 m³ per year.

Calculations:

$$\begin{array}{rcl} Q_{3 \ Low \ Permeability} &=& Q_1 + Q_{2 \ Low} \\ &=& 300 \ m^3/yr + 631 \ m^3/yr \\ &=& 931 \ m^3/yr \\ Q_{3 \ Medium \ Permeability} &=& Q_1 + Q_{2 \ Med} \\ &=& 300 \ m^3/yr + 5197 \ m^3/yr \\ &=& 5497 \ m^3/yr \end{array}$$

6.1.3 Area 3 – Downgradient

A portion of the precipitation falling onto the area downgradient of the landfill will infiltrate through the subsurface and mix with the groundwater flow from Area 2. Groundwater recharge flux from downgradient precipitation was estimated by multiplying the precipitation infiltration rate by area downgradient of the landfill. The infiltration rate for Dawson Creek area was obtained from Protocol 2 for Contaminates Sites (2017)¹. The area downgradient of the landfill was estimated to be approximately 15,000 m². Based on the Dawson Creek infiltration rate of 80 mm/yr, the flux of precipitation infiltration downgradient of the landfill is estimated to be 1200 m³/yr (Q₄).

The groundwater flux leaving Area 3 ($Q_5 = Q_3 + Q_4$) was calculated to be between 2,131 and 6,697 m³ per year. This value is representative of the upgradient groundwater flux that mixes with leachate and downgradient precipitation that

¹ Protocol 2 for Contaminated Sites, 2017. Ministry of Environment and Climate Change Strategy

discharges into Dawson Creek. The clean stormwater runoff from Area 3 would also enter Dawson Creek but would not adversely influence groundwater quality.

This is estimate is shows that leachate is between 30 and 78% of the volume discharging into the creek (based on a low or medium permeable cover material). Given the contrast in permeability between the clayey soils and sand and gravel, it is likely that much of this discharge is occurring within the former Dawson Creek meander.

Calculations:

$$Q_{5 Low} = Q_{3 Low} + Q_4$$

= 931 m³/yr + 1200 m³/yr
= 2131 m³/yr

 $Q_{5 High} = Q_{3 Med} + Q_4$ = 5497 m³/yr + 1200 m³/yr = 6697 m³/yr

7. Conclusions

Site Physical Setting

- The Site is located south of Highway 49 and north of Dawson Creek
- Based on Site inspections, the following observations have been made:
 - Loose soil mounds were found at the landfill plateau.
 - Uncompacted cover soil with no vegetation was found at the top of the west side slope of the landfill.
 - Ponded surface water was found at the southwest toe of the landfill.
 - Visual evidence of differential settlement was observed including a large crack at the toe of slope along the west side of the landfill and sloughing on the south landfill side slope.
 - Scattered litter such as scrap metal and concrete were observed at the west side of the landfill.
 - Exposed waste was observed at the southeast side slope of the landfill.
 - Exposed geosynthetics observed on southwest slope

Site Hydrogeology

- Groundwater levels and quality is monitored at wells DC-98-5, DC-BH101, DC-95-2, DC-98-1, and DC-98-3, installed upgradient, cross-gradient, and downgradient of the landfill within the overburden
- Groundwater elevations at the Site range from approximately 643 m AMSL to the north, to approximately 630 m AMSL to the south.
- Groundwater at the Site flows to the south, following local topography and towards Dawson Creek.
- Hydraulic conductivity in the overburden has been estimated to range from 3 x 10⁻⁹ to 1 x 10⁻⁶ m/sec in the clay till and 1 x 10⁻⁴ m/sec in the sand and gravel in the old creek meander of Dawson Creek
- The contrast in hydraulic conductivity between the clay till and creek meander will result in a preferential pathway for groundwater and leachate to flow to Dawson Creek

Groundwater Quality

At the downgradient monitoring wells DC-19-1 and DC-98-1, concentrations of chloride, boron, ammonia, H₂S, arsenic, cobalt, iron, and manganese are elevated compared to upgradient and cross-gradient groundwater and exceed CSR DW and/or FWAL water quality standards.

 Based on the historical data, concentrations of leachate indicator parameters in downgradient groundwater appear to be stable indicating that the presence of leachate is not worsening over time.

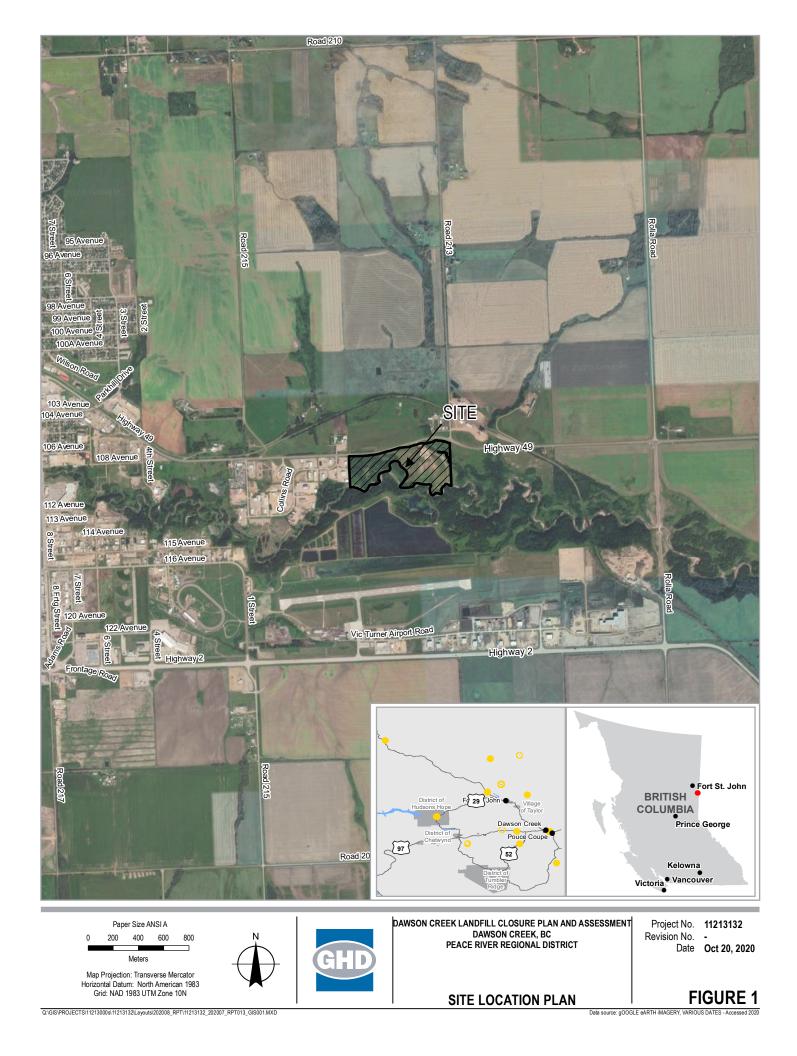
Surface Water Quality

- Background surface water quality in Dawson Creek is known to be impacted by the wastewater treatment plant, which is located upstream from the landfill and contributes a large proportion of surface water flow to the creek
- Elevated concentrations of surface water analytical parameters observed in Dawson Creek are interpreted to be representative of natural conditions and/or impacts from the wastewater treatment plant
- Concentrations of leachate indicator parameters in surface water within Dawson Creek are generally similar or higher at monitoring locations upstream of the landfill compared to mid-stream and down-stream locations
- Groundwater impacted by leachate discharges into Dawson Creek in the summer and fall as indicated by elevated concentrations of sodium and boron at downstream surface water monitoring locations.
- Boron and sodium concentrations in Dawson Creek are well below the applicable water quality standards and show no increasing trends, indicating that groundwater recharge is not adversely affecting freshwater aquatic life in Dawson Creek.
- The landfill is not adversely impacting freshwater aquatic life in Dawson Creek.

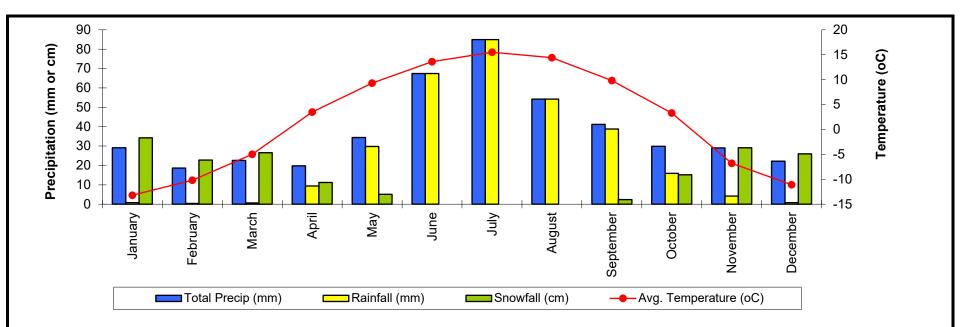
Leachate Generation Rate

- Leachate generation at the landfill was estimated using the HELP model for two scenarios
 - The first model assumed a low permeability cover (1.0 x 10⁻⁹ m/sec), representing properly moistureconditioned and compacted cover material with minimal deterioration
 - The second model assumed a medium permeability cover (1.0 x 10⁻⁷ m/sec), representing a conservative estimate for the effective permeability of the existing cover at the Landfill
- Based on the two scenarios, the leachate generation for the landfill was estimated to be between 631 and 5,197 m³ per year

Water Balance Model


- A water balance model for the Site to quantitatively estimate the movement of groundwater and leachate through the Site was completed
- The model considered groundwater flow from upgradient of the landfill, leachate generated within the landfill footprint using a HELP model, and precipitation falling downgradient of the landfill footprint
- The groundwater discharge into Dawson Creek is estimated to be between 2,131 and 6,697 m³ per year

8. Recommendations


Based on the findings of this Report, the following recommendations are made:

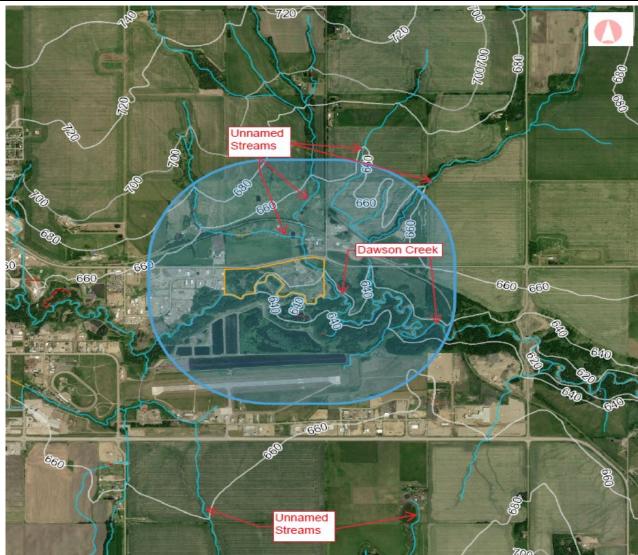
- Test pitting needed to determine hydraulic conductivity and thickness of landfill cover. This can be used to confirm the results of the HELP model and confirm leachate generation rates
- Continue monitoring groundwater and surface water quality at the Site
- Implement cover rehabilitation measures described in the Cover Rehabilitation report (GHD, 2023)

Figures

N.4	Daily Average	Daily Maximum	Daily Minimum	Rainfall	Snowfall	Precipation
Month	Temperature (Celsius) ⁽¹⁾	Temperature (Celsius) ⁽¹⁾	Temperature (Celsius) ⁽¹⁾	(mm) ⁽¹⁾	$(cm)^{(1)(2)}$	(mm) ⁽²⁾
January	-13.2	-7.2	-19	0.8	34.2	29.1
February	-10.2	-3.9	-16.5	0.4	22.8	18.6
March	-5	0.9	-10.9	0.6	26.6	22.6
April	3.5	10	-3.1	9.4	11.2	19.8
May	9.3	16.4	2.1	29.8	5.1	34.4
June	13.6	20.1	6.9	67.4	0	67.4
July	15.5	22.2	8.9	84.9	0	84.9
August	14.4	21.5	7.2	54.2	0	54.2
September	9.8	16.2	3.3	38.8	2.4	41.2
October	3.3	9	-2.4	15.9	15.2	29.9
November	-6.8	-1.5	-12.2	4.2	29.1	29
December	-11.1	-5.3	-16.8	0.8	26	22.2
Annual	1.9	8.2	-4.4	307	173	453.2

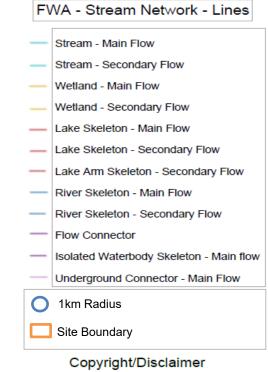
Notes:

(1) Source: Environment Canada: Climate Normals - Dawson Creek A (Station No. 1182285), 1981 - 2010


FIGURE 3 CLIMATE DATA

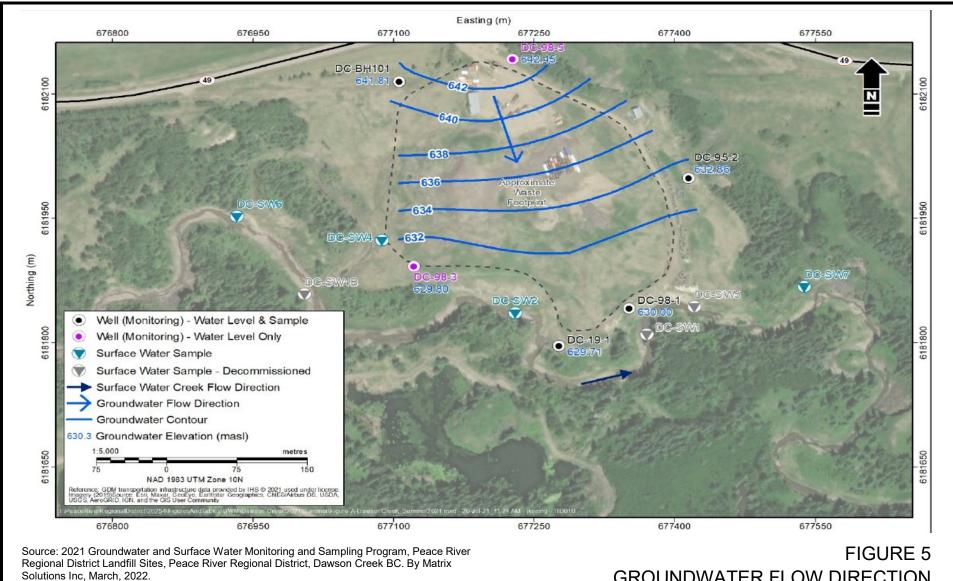
GHD

(2) 1 cm of snowfall corresponds to 1 mm of precipation Approximate Dawson Creek Landfill Site Latitude 55°45'04"N GROUNDWATER AND SURFACEWATER IMPACT ASSESSMENT


DAWSON CREEK, BC

Peace River Regional District

Source: iMap B.C. accessed June 2020


The material contained in this web site is owned by the Government of British Columbia and protected by copyright law. It may not be reproduced or redistributed without the prior written permission of the Province of

without the prior written permission of the Province of British Columbia. To request permission to reproduce all or part of the material on this web site please complete the Copyright Permission Request Form which can be accessed through the Copyright Information Page

1:50,000

FIGURE 4 TOPOGRAPHY AND DRAINAGE WITHIN 1KM GROUNDWATER AND SURFACEWATER IMPACT ASSESSMENT DAWSON CREEK, BC Peace River Regional District

GHD

GROUNDWATER FLOW DIRECTION GROUNDWATER AND SURFACEWATER IMPACT ASSESSMENT DAWSON CREEK, BC Peace River Regional District

Appendices

Appendix A Borehole Logs

CITY O	F DAWSON	CREEK				DAWSON CREEK LAND						OREHOLE NO: 97-1
						NE 1/2 SECTION 12	TWP 78 RGE 1	5_W6	M			ROJECT NO: EG08201
	W 1000 TR	NUCK/ WI	et rotal	۲			·····				<u></u>	LEVATION:
-	e type		by Tube		No Recovery	SPT Test (N)	إيسعنا	Sampl	e		<u> </u>	t-Pen Core
BACKE	FILL TYPE	BEN	TONITE	<u> [</u>	PEA GRAVEL	SLOUCH	GROU	T 		<u> </u>	⊿ DRIL T	L CUTTINGS SAND
_				1		~~		ЪЕ	0			
DEPTH(m)		DARD PEN (HO 60	(N) 🔳 BO	SYMBOL		SOIL		SAMPLE TYPE	SAMPLE NO	E	SLOPE INDICATOR	OTHER TESTS
PTH	PLASTIC	M.C.	LIQUID	N.	1	חדימיזמיזמ	N	PLE	MPL	SPT(N)	IS C	
DE	PLASIK I	M.U.		Sol		DESCRIPTIO	IN	SAM	SAI	0.		COMMENTS
	20	0 60	80							ļ		7
0.0				\bigotimes		, <mark>silty, sandy,</mark> brown l	oose to					
- 1.0				\bigotimes	compact							4
- 2.0				X								
					CLAY varved	, silty, high plastic, s	tiff.					
- 3.0				V//	grey to grey	ish brown, laminated			U1			U1 Z = 3.1 5o 3.4 m varved clay, grey/brown,
- 4.0						lastic pockets						thin varves (1 to 4 mm)
			·····	[]]								
- 5.0												U2 Z = 5.5 to 5.8 m
- 6.0				///		ith brown-grey mediu	ım plastic		U2			varved clay, grey/brown some
					laminations,	random salt crystals						inclined of 20 degrees; 4"
- 7.0		•••••										
- 8.0				///								
					stiff to very	stiff, gypsum crystals	3		U3			U3 Z = 8.5 to 8.8 m varved clay, siltier, gypsum
- 9.0					JUN IN VELY	Start gypourr crystuis	,					crystals
- 10.0												
-11.0												U4 Z = 11,6 to 11.9 m
- 12.0						ome sand, very stiff,			U4			some laminations 1/4" and 1
						igh plastic, dark grey	, fine					pockets
- 13.0					gravel sizes,	gypsum crystals						
- 14.0												
					medium elec	tic, sandstone nodule	q		U5			U5 Z = 14.6 to 15.0 m
- 15.0					meann hos		u					lacustrine clay
- 16.0									• •			-
												1
- 17.0												U6 Z = 17.7 to 18.1 m
- 18.0						n plastic, grey, fine g	ravel		U6		i	damaged, recovery, one 4"
					sizes to rand							stone, some clay
- 19.0				$\langle \rangle \rangle$	L = 18.6 -	18.9 m cobbles ome fine sand, stiff,	medium				4	
- 20.0					plastic, grey,	silt partinas	niculum					Pneumatic piezometer # 21678
					F				U7			installed at 20.2 m (see Note 1)
-21.0											4 .	U7 Z = 20.7 to 21.1 m
- 22.0											1	lacustrine clay; very wet
											< !·	
- 23.0				$\langle \rangle \rangle$	···· ···						•	
- 24.0						high plastic, grey			U8			U8 Z = 23.8 to 24.2 m locustrine clay
25.0					CLAY TILL, si	ty, trace of sond, sti	ff to		C1			C1 Recovery = 83 %
	DA Do	rth	8/ Fn	vir	onmant	al Limited	LOGGED BY: C		K			COMPLETION DEPTH: 43.0 r
AO	IVH EQ						REVIEWED BY:	AGK				COMPLETE: 97/06/18 Page
		E	dmon	ton,	Alberta	<u></u>	Fig. No:					1 roge

CITY C)F DAWSON	CREEK				DAWSON CREEK						OREHOLE NO	
						NE 1/2 SECTION	12 TWP 78	RGE 15	W6M			ROJECT NO:	EG08201
	W 1000 TR			Y				_				EVATION:	
	LE TYPE		y Tube		No Recovery	SPT Test	<u>(N)</u>	Grab Sc	mple		🗋 Split		Core
BACKE	ILL TYPE	BENT	DNITE	Ŀ	PEA GRAVEL	SLOUCH		GROUT	T · 1	Ľ		L CUTTINGS	SAND
DEPTH(m)	■ STANG 204)ard pen (1 0 _ 60	() ■ 80	SYMBOL		SOIL			SAMPLE TYPE	SPT(N)	SLOPE	OTH	er tests
	PLASTIC	M.C. 0 60	UQUID 	SOIL S	I	DESCRIPT	'ION		SAMPL	.dS	SLO	CO	MMENTS
25.0 - 26.0					slickensided,	edium—high plast fine gravel sizes	(friable						
- 27.0					cemented gr	/grey, some silts ey sandstone, gy avel sizes increa	psum cryst		с ===	2		C2 Recovery	= 83 %
- 28.0					depth				c	3		C3 Recovery	= 109 %
- 29.0						oles, fine sand ir/non-planar sl	ckensides		┝╋┤				
- 30.0 - 31.0					CLAY, silty, m	nedium to high p grey, fine silt lar	lastic, stiff	 	c	4		C4 Recovery (Pump Water	pressure build
- 32.0					or partings	me fine sand, lov		, 			•	causing core	to washed out)
- 33.0					silty, medium random rust	to high plastic, stains, laminatio	grey, ns and		C	5		C5 Recovery	= /\/ %
- 34.0					intermixed/in	all @ 255_degree terbedded with Ia	ow plastic	(
- 35.0					silly clay or (clayey sand beds	or parting	S	C	5		C6 Recovery	= 59 %
- 36.0 - 37.0	•••••••••••••••••••••••••••••••••••••••				planar, some	sides, discontinu striation (20 to	55 degree	s)	C	,		C7 Recovery	= 67 2
- 38.0					in higher plas fluvial sand/s indistinct bed	stic clay; intermix ailt beds/partings ding	ed with ,	1					
- 39.0					Wet, gypsum	org crystals, thin fin ickensided below		·	CE	3		C8 Recovery	= 77 %
- 40.0						20 to 35 degree			CS		4 4 4 7	C9 Recovery	= 67 %
- 41.0 - 42.0 - 43.0					fine sand/silt lamination ru		kensides a	1			hintii	Pneumatic pi installed at 4 (See Note 1)	
- 43.0				Δ	subhorizontal End of Hole of	+ 43 0 m						C10 Recovery	
- 44.0						during drilling							
- 45.0						Ilation: piezo tip							
- 46.0						rapped to SI cas h tremie pipe	ing and						
- 47.0 ·· - 48.0 ··													
- 49.0													
50.0						- 1 T · · ·	LOCCET) BY: CRA	/AGK			COMPLETION	DEPTH: 43.0 r
AG.	ka Eai				onment. <u>Alberta</u>	al Limited		ED BY: AG		·		COMPLETE:	

CITY O	F DAWSON	CRREK				DAWSON CREEK LAND				·	8	OREHOLE NO	<u>97-2</u>
						NE 1/2 SECTION 12	TWP 78 RGE	15 W6	M			ROJECT NO:	EG08201
MAYHE	N 1000 TR	RUCK/ WE	et rotar	ŕ							E	LEVATION:	
SAMPL	e type	Shell	by Tube		No Recovery	SPT Test (N)	Grab	Samp	e	Π	🛛 Spli	t-Pen	Core
BACKF	ILL TYPE	BENT	FONITE	Ē	PEA GRAVEL	SLOUGH	GROI	דע.] ORI	LL CUTTINGS	SAND
DEPTH(m)		Dard Pen (1060	(N) ■ 80	SYMBOL		SOIL		түрг	E NO	SPT(N)	SLOPE INDICATOR	E OTHE	R TESTS
DEPT	PLASTIC	M.C.	LIQUID	SOIL S	Ι)ESCRIPTIC	N	SAMPLE	SAMPLE	SPI			IMENTS
0.0	20 4	<u>10 60</u>	80		CLAY, silty, tr	ace of sand, stiff,							<u>-</u>
- 1.0				\square	medium to hi	gh plastic, dark gre s or kaminations, lar					4		
- 2.0						e, random gravel si					•		
- 3.0				\square	dark grey				UI		*	U1 Z = 3.1 U	:o 3.5 m
- 4.0										ļ		clay, well defi laminations, s	some high
- 5.0									U2			plastic lamina (1 to 3 mm), gravel sizes	
- 6.0					stiff, gypsum	crystals, some lami	nations					Ú2 Z = 5.5 t Clay, laminate	ed, medium
- 7.0 ·· - 8.0 ··											•	plastic, gypsu relatively dry	ni crystols,
- 9.0					sizes				U3		5	U3 Z = 8.5 t clay, massive	
- 10.0						ium to low plastic						to low plastic dry	, relatively
- 1 1.0					medium plosti	c							
- 12.0		·····							U4		4 A' 4 .	U4 Z = 11.6 clay, massive,	dark grey,
- 1 3.0					CLAY TILL, silly medium to hig	y, trace of sand, gh plastic, stiff, dark	grey,					medium plast dry	ic, relatively
- 14.0					random grave	l sizes, gypsum crys	tals				•	US Z = 11.6 Pneumatic pie	
- 15.0					medium plasti	c, sandy, stiff, grey,	random		U5			at 14.7 m (se	
- 16.0	•					ay zones, fine grave			C1			C1 Recovery =	= 100 %
- 17.0 - 18.0				a									
· 10.0 ···	· · · · · · · · · · · · · · · · · · ·			3	medium-high	5 to 70 degrees plastic, some sand,			C2		2 2 2 2	C2 Recovery =	= 95 %
20.0					dark grey, ran gravel sizes	dom high plastic clo	ıy, fine						
21.0					softer, high ple slickensides	astic, numerous			C3			C3 Recovery =	= 89 %
22.0	*****]	SUCKENSIUES				C4			C4 No Recove	rv.
23.0												UT 110 1.6004C	''
24.0	·····				nigher plastic,	clay zones, slickens	ides		C5		¶ ¶	C5 Recovery = C6 Recovery =	
25.0				<u> </u>			LOGGED BY: C		C6 K			COMPLETION	
AGI	RA Ea					u Limited	Reviewed by:					COMPLETE: 9	7/06/21
	71 (250V)	Ec	imonta	m,	Alberta		Fig. No:						Page

	DAWSON	URREK				DAWSON CREEK LAN		r 45 4	1011			OREHOLE NO:		
						NE 1/2 SECTION 12	2 IWP 78 RG	E 15 W	MdY	.		ROJECT NO: E	.608201	
	N 1000 TRU			/ 	2					<u> </u>		it-Pen	Core	
	E TYPE		by Tube		No Recovery	SPT Test (N		rab Sorr		<u>L</u>	<u> </u>	LL CUTTINGS	SAND	
BACKH	ILL TYPE	BEN	IONITE	Ľ	PEA GRAVEL	IIII SLOUGH	G	ROUT		- <u>-</u>			IS SAND	
DEPTH(m)	■ STAND 20 4	ARD PEN (0 60	N)∎ BO	SYMBOL		SOIL			AMPLE IYPE SAMPIE NO	SPT(N)	SLOPE	5 OTHE	r tests	
DEP	PLASTIC	M.C.		Soll	Ι	DESCRIPTI	ON		SAMPLE		S CA	🖁 СОМ	MENTS	
25.0	20 4	0 60	80	55	silt partings,	slickensides			C			•	<u> </u>	
- 26.0				5	slickenside			H				٠ ۱		
					shale nodule:	\$			C	,		C7 Recovery	= 41 %	
27.0												i.		
- 28.0						very stiff, grey, shi								
					noaules, cobi silt laminatio	oles, gypsum cryste ns. drier	ns, urown,		C C	3		C8 Recovery	= 83 %	
- 29.0			Ě								i •			11 CULL
- 30.0						badly weathered, s					÷.	·		TTTTTET
						lic, hard, grey, with Iowish-grey to rus			C9			C9 Recovery Pneumotic pi		574
- 31.0						very friable, fissile						Jot 31 m (see	ezonneter r zni e Note 1)	, 'Ju
32.0						· · · · · · · · · · · · · · · · · · ·		Π			•	v i		11111
									C1	0		C10 Recovery	/ = 83 %	
- 33.0								ļ						
34.0												•]		L L L
						cemented shale zo			C1	1		C11 Recovery	r = 83 %	tu ut
- 35.0					along various	ust stained, break: directions	eusiy					d		anna A
- 36.0					along ranoos	ancetione						1		սես
ŀ									C1	2		C12 Recovery	= 90 %	
- 37.0												1		
- 38.0												į	AA A	սեսս
- 39.0									C1	3	4	C13 Recovery	= 89 %	հող
					14 I J	· · · · · · · · · · · · · · · · · · ·		H				4		
- 40.0					medium piasi arev-brown	ic, harder shale, d breaks easily along	urk Inlanes in						AF #	i la un
ŀ					all direction	breaks easily along	pianee in		C1	4		C14 Recovery	= 95 %	urul.
- 41.0						1 4 F			ų			4		2616161
- 42.0					End of Hole (at 41.5 m during drilling								عييدان
42.0					NO MARCE IOS	Found anning		ŀ						шыц
- 43.0														-loueu:
- 44.0														u u u
- 45.0					Note 1: Inst	allation: piezo tip	in sand							ուր
45.0					pack sock, sl	rapped to SI casin					1			100
- 46.0					grouted in wi	th tremie pipe								Lune Lune
- 47.0												1		սսևս
- + / .0											Ì			11111
- 48.0														t uu
														սահո
- 49.0														11111
50.0			<u> </u>	<u> </u>		1 1 1	LOGGED B	/: CRA/	AGK	- L	<u> </u>	COMPLETION	DEPTH: 41.5	<u>m</u>
AG	ka Ea					al Limited	REVIEWED					COMPLETE: 9		
		Ε	dmont	on.	<u>Alberta</u>		Fig. No:					1	Pag	<u>e 2</u>

CITY OF DAWSON C	RREK		DAWSON CREEKK LANDF				BOREHOLE NO: 97-3
			NE 1/2 SECTION TWP 7	8 RGE 15 W6M			PROJECT NO: EG08201
MAYHEW 1000 TRU	CK/ WET ROTARY			·····			ELEVATION:
SAMPLE TYPE	Sheiby Tube	No Recovery	SPT Test (N)	Grab San	nple		
BACKFILL TYPE	BENTONITE	PEA GRAVEL	SLOUCH	GROUT			DRILL CUTTINGS [SAND
				L	ш _		
E STANDA	rd pen (n) 🔳	SYMBUL	SOIL		SAMPLE TYPE	\$	문을 OTHER TESTS
E STANDA 20 40 PLASTIC	60 80			_ 1	빌쎭	SPT(N)	COMMENTS
읍 PLASTIC			DESCRIPTION		AN W	52	<u>∽</u> ≘ COMMENTS
20 40		א		c	י ה		
0.0		GARBAGE, la	rge pieces of concrete,	metal,	-	1	
- 1.0	No.		xed with clay				
	8		on; large pieces of				
- 2.0	×	🗙 concrete					
- 3.0	ß	8					
*••	8	8		F	ZU		U1 Z = 3.1 to 3.4 m
- 4.0	B	8					• •
- 5.0	l l l l l l B	8					1
- 5.0	8	8			U2		U2 Z = 5.5 to 5.8 m
- 6.0			ith gravel sizes, black l	.o dark 🗖	02		Minedium to coarse sand,
	8	💥 grey					gravel, silty clay, very wet
- 7.0		CLAY, silty, v	ery soft, squeezing, me	dium			4 .
- 8.0		to high plast	ic, grey, silt/fine sond				4 4
		pockets (too	soft to core)	l I	U3		↓ U3 Z = 8.5 to 8.8 m
- 9.0							silty clay, pebbles up to
- 10.0	l						e 3/4", very wet, 1/2" metal
10.0		2					piece, maximum noil
- 11.0							
- 12.0					U4		U4 Z = 11.5 to 11.9 m
- 12.0							soft, very soft at 11.7 m,
13.0	- B		ity, trace of sand, medi	umito			drier and stiffer at 11.8 m,
	2		stiff, grey, fine gravel opted to core but hole	Į	U5		U5 Z = 13.4 to 13.8 m
- 14.0			using high pump press	ures as			Clay till, high plastic,
- 15.0	3		rial form upper hole ke		U6		<pre>4 stiff U6 Z = 14.6 to 14.9 m</pre>
		falling in)					clay fill, high plastic
- 16.0	8				U7		stiff to very stiff U7 Z = 16.2 to 16.6 m
- 17.0	5						clay fill, high plastic,
	- B	2					stiff to very stiff, steel plate 1" x 2" at the bottom
18.0	3	2		K	2 08		Pneumatic piezometer 1216
- 19.0	B	3					at 18.5 m (see note 1)
		×			Z U9		U9 Z = 19.3 to 19.6 m
- 20.0		End of Hole					
			t 1.5 m at completion ater throughout the dril	linn			
- 21.0		of borehole	ater unoughout the orn	miy			
- 22.0							
		Note to Inch	allation: piezo tip in so	nd l			
- 23.0			tapped to SI casing and				
- 24.0			th tremie pipe				
		ľ					
25.0		<u> </u>		CGED BY: CRA			COMPLETION DEPTH: 19.6
AGKA Ear	th & Env	ironment		VIEWED BY: AGK	(COMPLETE: 97/06/20
	Edmonto	n, Alberta	त त	g. No:			Page

ACE RIVER REGIONAL DISTRICT	PHASE 2 - DAWSON (CREEK LANDFILL	BOREHOLE NO: 98-4
	NE 1/4 12-78-15-		PROJECT NO: EG08275
NTERRA 310 TRACK/ WET ROTAR			ELEVATION:
MPLE TYPE Sheiby Tube	No Recovery SPT Test (N)	······	Split-Pen Core
ACKFILL TYPE BENTONITE	PEA GRAVEL SLOUGH	GROUT	ORILL CUTTINGS SAND
E = STANDARD PEN (N) ■ 108 20 40 60 80 PLASTIC M.C. LIQUID IUS	SOIL DESCRIPTION	SAMPLE TYPE SAMPLE NO SPT(N)	UNIT OTHER TESTS
20 40 60 80	ANDELL clay, silty, low to medium		
	LANDFILL, clay, silty, low to medium plastic, mixed with wood, pieces of plastic, some metal gravel sizes, (maybe bottom of landfill (TUBE), soft clay, with gravel sizes, pieces of plastic/glass CLAY TILL, silty, trace of sand, high	U1	Mixed heavy drilling mud, lossing some water in kandfill material 3.0 Bit plugged, pieces of plastic/wood retained in suspension plugged off bit ports 4.0 Bit plugged 5.0 Bit plugged 5.0 Bit plugged 6.0 Attempt to push Nikon vane, no success 7.0 8.0
1.0	plastic, stiff, dark grey, shale nodules and pockets, random gravel sizes gravel sizes	U2 01 15	Pneumatic piezometer #22571 installød @ 8.6 m
0.0 12/15		U3 D2 12/150	On rock
2.0		U4 2 03 20 4 4	- 12.0
4.0		U5	Pneumatic piezometer #22569 Installed @ 13.9 m
	······································	LOGGED BY: CRA	COMPLETION DEPTH: 24.0 m
AGKA Earth & Env	rironmental Limited	REVIEWED BY: AGK	COMPLETE: 98/04/14
Edmonto	on, Alberta	Fig. No:	Page 1 of 2
23 11:21PS (15HY)			

. .

PEACE	RIVER REGION	IAL DISTRICT	,		PHASE 2 - DAWSON	I CREEK L	AN)FILL): 98-4	1
					NE 1/4 12-78-15									EG08275	
	rra 310 Trac	K/ WET ROT	ARY		DAWSON CREEK, BR		_				بل ب	ELEVA			
-	e type	Sheiby Tube		No Recovery	SPT Test (N)		<u> </u>	ab Sa	mple			plit-Pe		Cor	
BACKF	ill type	BENTONITE	-	PEA GRAVEL	IIII SLOUCH	<u>i.</u>	GR	OUT				RILL CL	JTTINGS	SAN	D
DEPTH(m)	ESTANDARD 1 20 40 PLASTIC M.C.	. Liquid	SOIL SYMBOL	DES	SOIL SCRIPTION		SAMPLE TYPE	SAMPLE NO	SPT(N)	SLOPE INDICATOR				IER TES DMMENT	
15.0 16.0 17.0 18.0 19.0 20.0 21.0		60 80		plastic, stiff, dar sizes, shale nod stiff to very stiff some sand, med to very stiff, dar fine gravel sizes SAND, very fine dense, grey to g CLAY TILL, silty, high plastic, very gravel sizes, sha SAND, very silty, dark brown, inter	ium to high plastic, k grey, shale nodule grained, very silty, reyish brown some sand, medium v stiff, dark grey, le nodules fine grained, dense, bedded/intermixed v stiff, dark grey clay	s, lo		U6 D5 U7 D6 D7 U9 D8	18 26 53/100 23 29						
- 23.0 - 24.0 - 25.0				high dark grey c thick End of Hole at 2	nd, with random me lay pockets up to 25 4 m 5.1 m with 0.4 m sti	> mm 	X	D10	31		-				برا بدید با در در ارد ب
- 26.0															
- 27.0															استوراد
- 28.0 - 29.0 - 30.0															
	RA Eart			ironment n. Alberta	al Limited	LOGGED REVIEWE Fig. No:	DB							1 DEPTH: 2 98/04/14	

PEACE	RIVER	REGIONAL	DISTRIC	T	P	HASE 2 - DAWSON	CREEK L	ND	FILL				BOR	EHOLE NO:	98-5	
					N	E 1/4 12-78-15	-W6M						PRO	JECT NO: E	G08275	
CANTE	RRA 31	0 TRACK/	WET RO	TARY	D	AWSON CREEK, BRI	TISH COLU	MB	IA				ELEN	ATION:		
SAMP	le type	S	helby Tub	e	No Recovery	SPT Test (N)		Gro	ıb Sa	mple	_		Split-F		Core	
BACK	FILL TY	(PE BI	ENTONITE		PEA GRAVEL	SLOUGH	4	GRO	OUT			\square	ORILL	CUTTINGS	SAND	
E)	■ ST/	ANDARD PEN 40 60	(N) ■	SYMBOL		SOIL		TYPE	E NO	(z		MIC	MUC	0TH	ER TESTS	E E
DEPTH(m)	PLASTIC	<u>+0 80</u> M.C.	LIQUID	SOIL SY		CRIPTION		SAMPLE TYPE	SAMPLE NO	SPT(N)		PNEUN	PNEUMATIC	CO	MMENTS	DEPTH(m)
0.0	_20	40 60	80			Ity, fine sandy, low grey, wood chips, I				<u> </u>				to do Nilco	nt hole attempted n vanes, could ine in the clay	E 0.0
1.0				\propto	pieces of plastic GRAVEL, sandy, si	· · · · · · · · · · · · · · · · · · ·	/								,	1.0
- 20						race of sand, high grey, fine gravel les	 	X	D1	10	¥. 4. 4					2.0
- 3.0									U1		•					
4.0		· · · · · · · · · · · · · · · · · · ·			SLICKENSIDE			X	D2	11	4			1		4.0 1
- 5.0								$\overline{\mathbf{Z}}$	U2 D3	10				Pneumatic installed ©	biezometer # 22837 5.0 m	5.0
- 6.0									U3							6.0
- 7.0							ć	X	D4	16	4 - - -					E 7.0
- 8.0	···· • • • • • • • • • • • • • • • • •				some sand			X	U4 D5	16	•	•		qu = 226 k Dry density Wet density	Pa = 1665 kg/m3 = 1957 kg/m3	8.0
- 8.0 - 9.0 - 10.0 - 11.0							r.	X	D6	14						19.(
- 10.0		•••• ••••					Ľ				•	4 4 4				
- 11.0								X	D7	12		•				- 12.0
- 12.0	Ē								08	20	×	<				13.
- 12.0 - 13.0 - 14.0							ĥ					* * * *		on rock		
- 14.0 15.0							4	Ζ	D9	14						1: 1:
	RA	Earth			ironmenta	l Limited	LOGGED REVIEWE							OMPLETION OMPLETE: S	DEPTH: 20.6 m 38/04/16 Page	
6.76777	1212171 (1516	w]	Edmo	<u>)nto</u>	<u>n, Alberta</u>		Fig. No:	. .							Fuye	1.01

PEACE	RIVER REGIO	ONAL DISTRICT				- DAWSON C		NDFIL	<u> </u>					D: 98-5	
						12-78-15-1			<u> </u>					EG08275	
_		CK/ WET ROT	ARY	<u> </u>		CREEK, BRITIS							ATION:		
	le type	Shelby Tube		No Recovery		SPT Test (N)			Sample			Split-P		Core	
BACKF	ILL TYPE	BENTONITE	— F	PEA GRAVEL		SLOUGH	<u>•</u>]	GROUT	[<u> </u>			UTTINGS	SAND	
DEPTH(m)	├	C. LIQUID	SOIL SYMBOL	DES	SOI: SCRIF	L PTION		SAMPLE TYPE SAMPLE NO	SPT(N)	SLOPE INDICATOR		PNEUMATIC PIEZOMETER	OTH CC	HER TESTS DMMENTS	
- 15.0 16.0 17.0 18.0 19.0 20.0				CLAY TILL, silty, stiff, dark grey, nodules,				Z 01'					Pneumatic installed ©	: piezometer ∦2316 9 19.7 m	-1
- 21.0				End of Hole at Installed SI to 1		th 0.6 m stic	kup	A							
- 23.0												'			
- 24.0													l		
- 25.0												-			
- 26.0															
- 27.0															
- 28.0															
- 29. 0			-												
30.0						<u> </u>	00000		<u> </u>		l			N DEPTH: 20.6 m	
AG	RA Ear	th & Er	ıvi	ronment	al Lir		.ogged Reviewed							98/04/16	<u> </u>
				<u>1. Alberta</u>		· ·	iq. No:	/ UL. /	אטר	~	<u></u>			page	-

PEACE	RIVER F	REGIONAL	DISTRIC	T		PHASE 2 - DAWSON	CREEK LA	NDFI	U.			Π	BORE	EHOLE NO: 98-6	
				•		NE 1/4 12-78-15-			•	<u></u>				JECT NO: EG08275	
CANTE	RRA 310	TRACK/	WET RO	TARY		DAWSON CREEK, BRIT	ISH COLU	IBIA					ELEV	ATION:	
SAMP	LE TYPE	S	helby Tub		No Recovery	SPT Test (N)		Grab	Sampl	e			lit-P		
BACK	FILL TY	РЕ 📕 В	ENTONITE		PEA GRAVEL	SLOUGH	<u>.</u>	GROU	۳ 	<u> </u>		<u> 0</u> R		CUTTINGS 🔯 SAND	- <u>-</u>
DEPTH(m)	■ STAL 20 PLASTIC	NDARD PEN 40 60 M.C.	(N) ■ 80 UQUID	SYMBOL	השת	SOIL SCRIPTION		SAMPLE ITPE	SPT(N)		NFUMATIC	ZOMETER	PNEUMATIC PIEZOMETER	OTHER TESTS COMMENTS	DEPTH(m)
В		•		SOIL	L D Du	SUME HON		\$ 5	5		┦ӏ╸	≣	~ ~	COWWENTS	
0.0	20	40 60	80	×		silty, high plastic, gr	ey			•	4		T	No water loss during drilling	e 0.0
- 1.0						, trace of sand, high iff, dark grey, fine nale nodules,									1.0
- 2.0							2	∑ ¤ 	1 24		A . A				12.0 1.1.1.2.0
- 3.0					stiff			U D		4 4	•				L- 3.0
- 4.0									3 14	4	i i i				1.0 1 1 1 1
- 5.0							ľ								5.0
- 6.0	⊨				some sand		2	U. C						qu = 88 kPa Dry density = 1495 kg/m3 Wet density = 1960 kg/m3	L 6.0
7.0 8.0								0	5 12					Pnuematic piezometer # 2257. installed @ 7.8 m	
- 9.0											•				
- 10.0		,			stiff to very sti	ff, random coal chips				4	4 . 4		-		10 10
- 11.0					,		2	Z o	7 24	•					
- 12.0						d, very stiff, medium	to	Z ¤	8 33	2	¥. ¥. ¥.				- 12
- 13.0			•		high plastic, da sizes, shale noo	rk grey, fine gravel dules					× • •				13 11 11
- 14.0							2	< P	9 25		•				14 14 14 15
<u>15.0</u>	GRA I	Earth				tal Limited	LOGGED REVIEWED Fig. No:			[♥ [_ 		I.		OMPLETION DEPTH: 23.0 m OMPLETE: 98/04/17 Page)
	1:22Pi (15km	ŋ 	Lamo	<u>)11(C</u>	on, Alberta		jrių, no.								

: :

PEACE	RIVER REGION	IAL DISTRICT			PHASE 2 - DAWSON		AND	FILL	_					10: <u>98</u> -	
					NE 1/4 12-78-15		<u></u>			<u> </u>			ATION:): EG08275)
	rra 310 trac				DAWSON CREEK, BRI	ISH COLU	_	_							
	e type	Shelby Tube		No Recovery	SPT Test (N)			ab Sai	mple	_		plit-P	en Cuttings		
BACKF	ILL TYPE	BENTONITE		PEA GRAVEL	SLOUCH	<u>.</u>	GR							SA	
DEPTH(m)	PLASTIC N.C.	<u>60 80</u> . Liquid	SOIL SYMBOL	DES	SOIL SCRIPTION		SAMPLE TYPE	SAMPLE NO	SPT(N)	SLOPE INDICATOR		PNEUMATIC PIF7DMFTFR	ro (THER TE	
15.0	20 40	60 80		hard, medium	some sand very sti to high plastic, dark	iff to grey,	X	D10	40						
- 16.0				tine gravel size	s, shale nodules					• •					
- 17.0	·····		\int	very fine graine pockets/partine	ed, dense, sand/silt gs, brown		X	Di1	42						
- 18.0				plastic, dense,	r, clayey, non to iow brown, random dark	grey (X	D12	40						
- 19.0				hard, brown, fi	sandy, silty, low plo ne gravel sizes, som	istic, ie rust									
- 20.0				plastic, very st	sondy, medium to iff, dork grey, with erbedding of light g		K	D13	31						
- 21.0				to brown, silt/ 5 mm thick	fine sand lamination	s up to	X	D14	28				Pnuema	atic piezomet d 19 21.5 m	er # 23159
22.0				thick	and an experience of the sec										
- 23.0				End of Hole at Installed SI to	23.0 m 23 m with 0.7 m st	ickup									
24.0										- ·					
25.0															
26.0															
27.0															
E- 29.0															
<u>E 30.0</u>			1_	l		LOGGE	L D R	Y: CF	<u></u>		<u> </u>	<u> </u>	COMPLE	TION DEPTH	ł: 23.0 r
A	GRA Ear	th & I	In	vironmen	tal Limited	REVIEW								TE 98/04	/17
				<u>on, Alberta</u>		Fig. No):						. <u> </u>	<u> </u>	Page

CANTE	RRA 310 TRACK	/ WET ROTARY	 /	NE 1/4 12-78-15- DAWSON CREEK, BRIT		IBIA					JECT NO: EG08275 ATION:	
		Shelby Tube	No Recovery	SPT Test (N)		Grab Sc	mple		l s	plit-P	en 🚺 Core	
		BENTONITE	PEA GRAVEL	SLOUGH	[] []	GROUT					CUTTINGS 🔛 SAND	
DEPTH(m)	■ STANDARD PE 20 40 60	SYMBOL		SOIL		SAMPLE NO	SPT(N)		PNEUMATIC PIEZOMETER	EUMATIC	OTHER TESTS	
0.0 0.0	PLASTIC H.C. 			SCRIPTION		SAM		-	Z₩ -		COMMENTS	
- 1.0			plastic, mixed	with organic clay, pie and plastic, brown t	ces			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			Skid hole, on metal Skid hole, metal	يتستاييسيد
- 2.0			GRAVEL, sandy,	silty block								يتستنشله
- 3.0 - 4.0			CLAY TILL, silty	, some sand, stiff, hi rey, shale nodules, fir	igh ne	01	12					بالتعتيمينان
- 5.0	F				2	U1 D2	11				qu = 111 kPa Dry density = 1882 kg/m3 Wet density = 2204 kg/m3	بيباييسي
- 6.0			firm to stiff			7 U2	8					يسيليس
7,0			stiff		4	03		• •			Pnuematic piezometer #2257 installed © 6.9 m	70 LLL 10 LLL 11 LLL
- 8.0			Sun		\geq	D4	16					التديدينيا د
- 9.0 - 10.0					2	U4 D5	13 -			~		بىلىيىتىت
- 11.0					2	D6	12	• • • •				سيلسب
- 12.0			medium to high stiff, dark grey,	n plastic, stiff to very	,	07	17	4 4 4 4 4 4				
- 13.0			aun, dork grey								On rock	- Junnin Junnin
- 14.0 15.0							27				OMPLETION DEPTH: 23.2	
AC	GRA Eartl		vironment on <u>Alberta</u>	tal Limited	REVIEWED						OMPLETE: 98/04/18	e 1 of

PEACE	RIVER I	REGIONAL	DISTRIC	T	•••••••••••••••••••••••••••••••••••••••	· · · -	2 - DAWSON		AN	DFILL	····						98-7	
						·	12-78-15					····					G08275	
			WET RO				CREEK, BRI								ATION	l:		
SAMPL			Shelby Tub	e	No Recovery		SPT Test (N)			ob So	mple		Si 			~~	Core	
BACKFI		PE E	SENTONITE	<u> </u>	PEA GRAVEL		SLOUGH	4	<u> </u> 6	TUOS T	<u> </u>	1					SAND	
DEPTH(m)	20 PLASTIC	NDARD PEN 40 60 M.C.	<u>80</u> Liquid 	SOIL SYMBOL	DES	SOI SCRI	IL PTION		SAMPLE TYPE	SAMPLE NO	SPT(N)	SLOPE INDICATOR		PIE7DMETER	(R TESTS (MENTS	
15.0 - 16.0 - 17.0 - 17.0 - 18.0 - 19.0 - 20.0 - 21.0 - 22.0 - 22.0 22.0 23.0 					CLAY TILL, silty, high plastic, sti grey, fine grave very stiff SAND, very fine of clay, dense, dark grey clay CLAY TILL, silty, plastic, brown, CLAY, silty, fine platic, dark gre brown fine sand End of Hole at Installed SI to 2	grained brown, o layers/p very sa fine grav sandy, y, with t l/silt pa	y stiff, dark shale nodul , very silty, random high artings ndy, hard, l vel sizes medium to hin light gre rtings	trace n plastic ow high ey to		D9 D10 D11 D12 D13					Pnuer instal	natic pi led @ 2	ezometer # 23 2.2 m	
- 25.0														~				2!
- 26. 0 ··											1							E 20
- 27.0																		2
- 28.0																		
- 29.0																		2
30.0											_							Ę J
	•				ironment n. Alberta	al Li	mited	LOGGED REVIEWI Fig. No:	ED E								DEPTH: 23.2 3/04/18 Po	2 m ge 2 of

ę. .

1 . .

.

Appendix B HELP Model Inputs and Results

APPENDIX B - TABLE 1 SUMMARY OF HELP MODEL INPUTS AND RESULTS Dawson Creek Landfill

	Low Perr	neability	Medium Pe	ermeability
	Side Slopes	Plateau	Unlined	Lined
Layer 1				
Layer Type	Vert. Perc. Topsoil (Silty CLAY	Vert. Perc. Topsoil (Silty CLAY	Vert. Perc. Topsoil (Silty CLAY	Vert. Perc. Topsoil (Silty CLAY
Material Description	with Gravel)	with Gravel)	with Gravel)	with Gravel)
Material Texture Number	12 4.2 x 10 ⁻⁵			
Effective Saturated Hydraulic Conductivity (cm/s)		-		
Thickness (centimetres)	15	15	15	15
Layer 2				
Layer Type	Barrier Soil Compacted Clay	Barrier Soil Compacted Clay	Barrier Soil Compacted Clay	Barrier Soil Compacted Clay
Material Description Material Texture Number	16	16	0	0
	1.0 x 10 ⁻⁷	1.0 x 10 ⁻⁷	0 1.0 x 10 ⁻⁵	0 1.0 x 10 ⁻⁵
Effective Saturated Hydraulic Conductivity (cm/s)				
Thickness (centimetres)	60	60	60	60
Layer 3				
Layer Type	Vert. Perc.	Vert. Perc.	Vert. Perc.	Vert. Perc.
Material Description	MSW	MSW	MSW	MSW
Material Texture Number	18	18	18	18
Effective Saturated Hydraulic Conductivity (cm/s)	1.0 x 10 ⁻³			
Thickness (centimetres)	1000	1000	1000	1000
Layer 4				
Layer Type	Barrier Soil	Barrier Soil	Barrier Soil	Barrier Soil
Material Description	Clay Till	Clay Till	Clay Till	Clay Till
Material Texture Number	0	0	0	0
Effective Saturated Hydraulic Conductivity (cm/s)	4.6 x 10 ⁻⁷			
Thickness (centimetres)	680	680	680	680
Slope	26.8%	0.6%	26.8%	0.6%
SCS Curve Number	85	95.2	85	95.2
Evaporative Depth Zone (centimetres)	15	15	15	15
Annual Averages (millimetres)				
Precipitation	462.27	462.27	462.27	462.27
Runoff	98.80	105.00	82.25	81.17
Evapotranspiration	355.53	345.35	304.54	290.59
Percolation/Leakage Through Barrier Layer	8.13	12.06	75.65	90.64
Average Head on Top of Barrier Layer	0.01	0.01	25.65	33.01
Change in Water Storage	-0.19	-0.15	-0.17	-0.14

Notes:

A material texture number of zero indicates that the design parameters are user specified, rather than default HELP3 Model data.

********	***************************************	* * * * * * * * *
********	***************************************	* * * * * * * * * *
* *		* *
* *		* *
* *	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	* *
* *	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	* *
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	* *
* *	USAE WATERWAYS EXPERIMENT STATION	* *
* *	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	* *
* *		* *
* *		* *
********	* * * * * * * * * * * * * * * * * * * *	*******
* * * * * * * * * * * *	***************************************	******

PRECIPITATION DATA FILE:	C:\DC\DC1PP.D4
TEMPERATURE DATA FILE:	C:\DC\DC1TM.D7
SOLAR RADIATION DATA FILE:	C:\DC\DC1SLRD.D13
EVAPOTRANSPIRATION DATA:	C:\DC\DC1ET.D11
SOIL AND DESIGN DATA FILE:	C:\DC\DC1SOIL.D10
OUTPUT DATA FILE:	C:\DC\DC1OUT.OUT

TIME: 8:27 DATE: 4/14/2023

TITLE: 11213132 DAWSON CREEK LANDFILL - SIDE SLOPE, LOW PERM

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 12 THICKNESS 15.00 CM = 0.4710 VOL/VOL POROSITY = FIELD CAPACITY = 0.3420 VOL/VOL WILTING POINT 0.2100 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.3059 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.419999997000E-04 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.63 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

TYPE 3 - BARRIER SOIL LINER

MATERIAL TEX	TURE	NUMBER	16		
THICKNESS	=	60.0	0	СМ	
POROSITY	=	0.4	270	VOL/VOL	
FIELD CAPACITY	=	0.4	180	VOL/VOL	
WILTING POINT	=	0.3	670	VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.4	270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.10000	0001	L000E-06	CM/SEC

LAYER 3

TYPE 1 - VERTICAL	PE:	RCOLATION LAYER
MATERIAL TEXI	URE	NUMBER 18
THICKNESS	=	1000.00 CM
POROSITY	=	0.6710 VOL/VOL
FIELD CAPACITY	=	0.2920 VOL/VOL
WILTING POINT	=	0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.2920 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.10000005000E-02 CM/SEC
THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WATER CONTENT	= = = =	1000.00 CM 0.6710 VOL/VOL 0.2920 VOL/VOL 0.0770 VOL/VOL 0.2920 VOL/VOL

LAYER 4

TYPE 3 - BARRIER SOIL LINER

MATERIAL TEXT	URE	NUMBER 0		
THICKNESS	=	680.00	CM	
POROSITY	=	0.4270	VOL/VOL	
FIELD CAPACITY	=	0.4180	VOL/VOL	
WILTING POINT	=	0.3670	VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.45999999	5000E-06	CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #12 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 27.% AND A SLOPE LENGTH OF 35. METERS.

SCS RUNOFF CURVE NUMBER	=	85.00	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.0000	HECTARES
EVAPORATIVE ZONE DEPTH	=	15.0	CM
INITIAL WATER IN EVAPORATIVE ZONE	=	4.589	CM
UPPER LIMIT OF EVAPORATIVE STORAGE	=	7.065	СМ

LOWER LIMIT OF EVAPORATIVE STORAGE	=	3.150	СМ
INITIAL SNOW WATER	=	2.347	СМ
INITIAL WATER IN LAYER MATERIALS	=	612.569	СМ
TOTAL INITIAL WATER	=	614.915	СМ
TOTAL SUBSURFACE INFLOW	=	0.00	MM/YR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM DAWSON CREEK BC

STATION LATITUDE	=	55.70	DEGREES
MAXIMUM LEAF AREA INDEX	=	3.50	
START OF GROWING SEASON (JULIAN DATE)	=	130	
END OF GROWING SEASON (JULIAN DATE)	=	270	
EVAPORATIVE ZONE DEPTH	=	15.0	CM
AVERAGE ANNUAL WIND SPEED	=	13.50	KPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	=	60.50	00
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	=	41.60	00
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	=	47.80	00
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	=	62.10	010

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SPOKANE WASHINGTON

NORMAL MEAN MONTHLY PRECIPITATION (MM)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
29.1	18.6	22.6	19.8	34.4	67.4
84.9	54.2	41.2	29.9	29.0	22.2

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SPOKANE WASHINGTON

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES CELSIUS)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
-13.2	-10.2	-5.0	3.5	9.3	13.6
15.5	14.4	9.8	3.3	-6.8	-11.1

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SPOKANE WASHINGTON AND STATION LATITUDE = 55.70 DEGREES

AVERAGE MOI	NTHLY VALUES	6 (MM) FO	R YEARS	1 THROU	GH 100	
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS			23.80 40.37		37.19 27.14	
STD. DEVIATIONS	12.14 67.03		10.13 21.33		19.12 13.33	
RUNOFF						
TOTALS			14.767 1.962	29.057 0.893		5.932 0.070
STD. DEVIATIONS	0.000 44.999	1.091 20.217	17.808 6.708	25.228 2.942		11.192 0.409
EVAPOTRANSPIRATION						
TOTALS			17.848 33.485	11.366 20.146	48.760 14.105	59.301 12.913
STD. DEVIATIONS	1.994 30.484		2.820 18.251		17.488 3.617	
PERCOLATION/LEAKAGE	THROUGH LAYE	IR 2				
TOTALS	0.0000 0.6246	0.0000 0.7460	0.0461 0.9621	0.2875 1.3393		
STD. DEVIATIONS		0.0000 0.5943	0.2075 0.8473		0.7780 1.3247	
PERCOLATION/LEAKAGE	THROUGH LAYE	CR 4				
TOTALS			0.0461 0.9621			
STD. DEVIATIONS	0.0000 0.4684		0.2075 0.8473			
AVERA	GES OF MONTH	ILY AVERA	GED DAILY	HEADS (CI	 M)	
DAILY AVERAGE HEAD OI	N TOP OF LAY	YER 2				
AVERAGES			0.0036 1.6411			
STD. DEVIATIONS	0.0000	0.0000	0.0200	0.5304	1.4031	1.372

1.1728 1.4555 1.9536 3.3158 2.1012 0.2073

 DAILY AVERAGE HEAD ON TOP OF LAYER
 4

 AVERAGES
 0.0000
 0.0000
 0.0003
 0.0015
 0.0010

 NORTHON
 0.0007
 0.0008
 0.0011
 0.0014
 0.0014
 0.0006

 STD. DEVIATIONS
 0.0000
 0.0000
 0.0002
 0.0005
 0.0008
 0.0007

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 100

	MM	CU. METERS PERCENT
PRECIPITATION	462.27 (101.696)	4622.7 100.00
RUNOFF	98.800 (56.9422)	988.00 21.373
EVAPOTRANSPIRATION	355.526 (68.1341)	3555.26 76.909
PERCOLATION/LEAKAGE THROUGH LAYER 2	8.13248 (3.39671)	81.325 1.75925
AVERAGE HEAD ON TOP OF LAYER 2	10.521 (5.543)	
PERCOLATION/LEAKAGE THROUGH LAYER 4	8.13248 (3.39671)	81.325 1.75925
AVERAGE HEAD ON TOP OF LAYER 4	0.007 (0.003)	
CHANGE IN WATER STORAGE	-0.189 (0.9685)	-1.89 -0.041
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	****

PEAK DAILY VALUES FOR YEARS	1 THROUGH 1	0 0			
	(MM)	(CU. METERS)			
PRECIPITATION	156.70	1567.000			
RUNOFF	135.109	1351.0894			
PERCOLATION/LEAKAGE THROUGH LAYER 2	0.107998	1.07998			
AVERAGE HEAD ON TOP OF LAYER 2	150.000				
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.107998	1.07998			
AVERAGE HEAD ON TOP OF LAYER 4	0.036				
SNOW WATER	135.25	1352.4823			
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	4710			
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.1	2100			
************	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *			

FINAL WATER	STORAGE AT EN	ND OF YEAR 100	
LAYER	(CM)	(VOL/VOL)	
1	3.4683	0.2312	
2	25.6200	0.4270	
3	292.0000	0.2920	
4	290.3600	0.4270	
SNOW WATER	1.578		

* * * * * * * * * *	******	* * * * * * * * * *
* *		* *
* *		* *
* *	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	* *
* *	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	* *
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	* *
* *	USAE WATERWAYS EXPERIMENT STATION	* *
* *	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	* *
* *		* *
* *		* *
* * * * * * * * * *	****	* * * * * * * * * *
*******	*****	********

PRECIPITATION DATA FILE:	C:\DC\DC2PP.D4
TEMPERATURE DATA FILE:	C:\DC\DC2TM.D7
SOLAR RADIATION DATA FILE:	C:\DC\DC2SLRD.D13
EVAPOTRANSPIRATION DATA:	C:\DC\DC2ET.D11
SOIL AND DESIGN DATA FILE:	C:\DC\DC2SOIL.D10
OUTPUT DATA FILE:	C:\DC\DC2OUT.OUT

TIME: 8:45 DATE: 4/14/2023

TITLE: 11213132 DAWSON CREEK LANDFILL - PLATEAU, LOW PERM

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXT	URE	NUMBER 12				
THICKNESS	=	15.00 CM				
POROSITY	=	0.4710 VOL/VOL				
FIELD CAPACITY	=	0.3420 VOL/VOL				
WILTING POINT	=	0.2100 VOL/VOL				
INITIAL SOIL WATER CONTENT	=	0.2925 VOL/VOL				
EFFECTIVE SAT. HYD. COND.	=	0.419999997000E-04 CM/SEC				

LAYER 2

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 16

		NOTIDEIX 10
THICKNESS	=	60.00 CM
POROSITY	=	0.4270 VOL/VOL
FIELD CAPACITY	=	0.4180 VOL/VOL
WILTING POINT	=	0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.10000001000E-06 CM/SEC

LAYER 3

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEX	TURE	NUMBER 18		
THICKNESS	=	1000.00	CM	
POROSITY	=		VOL/VOL	
FIELD CAPACITY	=	0.2920	VOL/VOL	
WILTING POINT	=	0.0770	VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.2920	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.10000005	5000E-02 CI	M/SEC

LAYER 4

TYPE 3 - BARR	IER	SOIL LINER		
MATERIAL TEXI	URE	NUMBER 0		
THICKNESS	=	680.00	СМ	
POROSITY	=	0.4270	VOL/VOL	
FIELD CAPACITY	=	0.4180	VOL/VOL	
WILTING POINT	=	0.3670	VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.44999998	7000E-06	CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #12 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 1.% AND A SLOPE LENGTH OF 25. METERS.

SCS RUNOFF CURVE NUMBER	=	95.20	
FRACTION OF AREA ALLOWING RUNOFF	=	50.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.0000	HECTARES
EVAPORATIVE ZONE DEPTH	=	15.0	СМ
INITIAL WATER IN EVAPORATIVE ZONE	=	4.388	СМ
UPPER LIMIT OF EVAPORATIVE STORAGE	=	7.065	CM
LOWER LIMIT OF EVAPORATIVE STORAGE	=	3.150	CM
INITIAL SNOW WATER	=	2.347	СМ

INITIAL WATER IN LAYER MATERIALS	=	612.368	CM
TOTAL INITIAL WATER	=	614.715	CM
TOTAL SUBSURFACE INFLOW	=	0.00	MM/YR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM DAWSON CREEK BC

STATION LATITUDE	=	55.70	DEGREES
MAXIMUM LEAF AREA INDEX	=	0.00	
START OF GROWING SEASON (JULIAN DATE)	=	130	
END OF GROWING SEASON (JULIAN DATE)	=	270	
EVAPORATIVE ZONE DEPTH	=	15.0	СМ
AVERAGE ANNUAL WIND SPEED	=	13.50	KPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	=	60.50	00
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	=	41.60	00
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	=	47.80	00
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	=	62.10	00

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SPOKANE WASHINGTON

NORMAL MEAN MONTHLY PRECIPITATION (MM)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
29.1	18.6	22.6	19.8	34.4	67.4
84.9	54.2	41.2	29.9	29.0	22.2

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SPOKANE WASHINGTON

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES CELSIUS)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
-13.2	-10.2	-5.0	3.5	9.3	13.6
15.5	14.4	9.8	3.3	-6.8	-11.1

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SPOKANE WASHINGTON AND STATION LATITUDE = 55.70 DEGREES

AVERAGE MONTHLY VALUES (MM) FOR YEARS 1 THROUGH 100

	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS		18.95 64.74	23.80 40.37	19.61 28.36	37.19 27.14	62.22 21.97
STD. DEVIATIONS		8.28 45.32		9.57 16.31		40.72 7.81
RUNOFF						
TOTALS	0.000 32.066	0.129 16.446		23.802 1.285	6.664 0.544	9.188 0.038
STD. DEVIATIONS		0.615 21.150	14.752 6.861			11.643 0.229
EVAPOTRANSPIRATION	N					
TOTALS		13.395 49.393	17.982 32.430	13.750 22.072	55.358 14.441	49.242 12.917
STD. DEVIATIONS		2.272 31.976	2.571 20.219	8.653 10.540		30.805 1.930
PERCOLATION/LEAKAC	GE THROUGH LAY	ER 2				
TOTALS	0.0009 1.1726	0.0025	0.3933 1.3260		1.5288 1.3465	0.981 0.603
STD. DEVIATIONS	0.0065 0.7221		0.6951 0.9466		0.6685 1.3318	
PERCOLATION/LEAKAG	GE THROUGH LAY	ER 4				
TOTALS		0.0025 1.2863				
STD. DEVIATIONS		0.0185 0.8006				
		0.8006	0.9466	1.1929	1.3318	
AVE	0.7221 ERAGES OF MONT	0.8006	0.9466	1.1929	1.3318	
	0.7221 ERAGES OF MONT D ON TOP OF LA 0.0000	0.8006	0.9466 GED DAILY 0.5262	1.1929 HEADS (CI 2.8888	1.3318 M) 2.7893	0.842

DAILY AVERAGE HEAD ON	TOP OF LAY	er 4				
AVERAGES	0.0000	0.0000	0.0004	0.0021	0.0016	0.0011
	0.0012	0.0014	0.0015	0.0016	0.0015	0.0006
STD. DEVIATIONS	0.0000	0.0000	0.0007	0.0011	0.0007	0.0009
	0.0008	0.0009	0.0010	0.0013	0.0015	0.0009

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 100

	MM	CU. METERS	PERCENT
PRECIPITATION	462.27 (101.696) 4622.7	100.00
RUNOFF	104.996 (52.0383) 1049.96	22.713
EVAPOTRANSPIRATION	345.354 (65.3345) 3453.54	74.708
PERCOLATION/LEAKAGE THROUGH LAYER 2	12.06452 (3.5900	3) 120.645	2.60985
AVERAGE HEAD ON TOP OF LAYER 2	15.554 (5.648)		
PERCOLATION/LEAKAGE THROUGH LAYER 4	12.06452 (3.5900	3) 120.645	2.60985
AVERAGE HEAD ON TOP OF LAYER 4	0.011 (0.003)		
CHANGE IN WATER STORAGE	-0.146 (0.9700) -1.46	-0.032
*****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
PEAK DAILY VALUES FOR YEARS	1 THROUGH 1	0 0
	(MM)	(CU. METERS)
PRECIPITATION	156.70	1567.000
RUNOFF	103.222	1032.2169
PERCOLATION/LEAKAGE THROUGH LAYER 2	0.107998	1.07998
AVERAGE HEAD ON TOP OF LAYER 2	150.000	
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.107998	1.07998
AVERAGE HEAD ON TOP OF LAYER 4	0.036	
SNOW WATER	135.25	1352.4823
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	4710
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.	2100
************	* * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *

FINAL WATER	STORAGE AT EN	D OF YEAR 100	
LAYER	(CM)	(VOL/VOL)	
1	3.6996	0.2466	
2	25.6200	0.4270	
3	292.0000	0.2920	
4	290.3600	0.4270	
SNOW WATER	1.578		

********	* * * * * * * * * * * * * * * * * * * *	*******
*******	******	******
* *		* *
* *		* *
* *	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	* *
* *	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	* *
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	* *
* *	USAE WATERWAYS EXPERIMENT STATION	* *
* *	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	* *
* *		* *
* *		* *
*********	* * * * * * * * * * * * * * * * * * * *	******
*********	* * * * * * * * * * * * * * * * * * * *	******

PRECIPITATION DATA FILE:	C:\DC\DC1PP.D4
TEMPERATURE DATA FILE:	C:\DC\DC1TM.D7
SOLAR RADIATION DATA FILE:	C:\DC\DC1SLRD.D13
EVAPOTRANSPIRATION DATA:	C:\DC\DC1ET.D11
SOIL AND DESIGN DATA FILE:	C:\DC\DC3SOIL.D10
OUTPUT DATA FILE:	C:\DC\DC3OUT.OUT

TIME: 9:7 DATE: 4/14/2023

TITLE: 11213132 DAWSON CREEK LANDFILL - SIDE SLOPE, MED PERM

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 12 THICKNESS 15.00 CM = 0.4710 VOL/VOL POROSITY = FIELD CAPACITY = 0.3420 VOL/VOL WILTING POINT 0.2100 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.3042 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.419999997000E-04 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.63 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 3 - BARRIER SOIL LINER

MATERIAL TEXI	URE	NUMBER 0		
THICKNESS	=	60.00	CM	
POROSITY	=	0.4270	VOL/VOL	
FIELD CAPACITY	=	0.4180	VOL/VOL	
WILTING POINT	=	0.3670	VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.99999997	5000E-05	CM/SEC

LAYER 3

PE	RCOLATION LAYER
'URE	NUMBER 18
=	1000.00 CM
=	0.6710 VOL/VOL
=	0.2920 VOL/VOL
=	0.0770 VOL/VOL
=	0.2920 VOL/VOL
=	0.10000005000E-02 CM/SEC
	URE = = = = =

LAYER 4

TYPE 3 - BARRIER SOIL LINER

MATERIAL TEXT	URE	NUMBER 0
THICKNESS	=	680.00 CM
POROSITY	=	0.4270 VOL/VOL
FIELD CAPACITY	=	0.4180 VOL/VOL
WILTING POINT	=	0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.459999995000E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #12 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 27.% AND A SLOPE LENGTH OF 35. METERS.

SCS RUNOFF CURVE NUMBER	=	85.00	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.0000	HECTARES
EVAPORATIVE ZONE DEPTH	=	15.0	CM
INITIAL WATER IN EVAPORATIVE ZONE	=	4.563	CM
UPPER LIMIT OF EVAPORATIVE STORAGE	=	7.065	СМ

LOWER LIMIT OF EVAPORATIVE STORAGE	=	3.150	CM
INITIAL SNOW WATER	=	2.347	СМ
INITIAL WATER IN LAYER MATERIALS	=	612.543	CM
TOTAL INITIAL WATER	=	614.890	СМ
TOTAL SUBSURFACE INFLOW	=	0.00	MM/YR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM DAWSON CREEK BC

STATION LATITUDE	=	55.70	DEGREES
MAXIMUM LEAF AREA INDEX	=	3.50	
START OF GROWING SEASON (JULIAN DATE)	=	130	
END OF GROWING SEASON (JULIAN DATE)	=	270	
EVAPORATIVE ZONE DEPTH	=	15.0	CM
AVERAGE ANNUAL WIND SPEED	=	13.50	KPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	=	60.50	00
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	=	41.60	00
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	=	47.80	00
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	=	62.10	010

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SPOKANE WASHINGTON

NORMAL MEAN MONTHLY PRECIPITATION (MM)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
29.1	18.6	22.6	19.8	34.4	67.4
84.9	54.2	41.2	29.9	29.0	22.2

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SPOKANE WASHINGTON

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES CELSIUS)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
-13.2	-10.2	-5.0	3.5	9.3	13.6
15.5	14.4	9.8	3.3	-6.8	-11.1

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SPOKANE WASHINGTON AND STATION LATITUDE = 55.70 DEGREES

AVERAGE MO	NTHLY VALUE:	S (MM) FO	R YEARS	1 THROU	GH 100	
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS			23.80 40.37		37.19 27.14	
STD. DEVIATIONS	12.14 67.03		10.13 21.33	9.57 16.31	19.12 13.33	
RUNOFF						
TOTALS	0.000 23.112		13.778 0.551		6.468 0.514	3.229 0.039
STD. DEVIATIONS			16.854 3.458		9.157 1.616	
EVAPOTRANSPIRATION						
TOTALS			17.850 29.247		38.605 14.007	47.728 12.912
STD. DEVIATIONS	1.994 22.231		2.799 15.315			25.440 1.920
PERCOLATION/LEAKAGE	THROUGH LAYI	er 2				
TOTALS		0.0000 16.8903	0.0000 7.5467			
STD. DEVIATIONS	0.0000 16.5111		0.0000 9.9598		5.8156 2.5067	
PERCOLATION/LEAKAGE	THROUGH LAYI	ER 4				
TOTALS			0.8469 10.3306		7.9666 7.9491	
STD. DEVIATIONS	5.2296 4.4464		2.7724 3.5179			
AVERA	GES OF MONTI				M)	
DAILY AVERAGE HEAD O	N TOP OF LAT	yer 2				
AVERAGES			0.0000 0.1229			
STD. DEVIATIONS	0.0000	0.0000	0.0000	0.0926	0.1214	0.319

0.	4438 ().4343	0.2301	0.0776	0.0336	0.0000

DAILY AVERAGE HEAD ON TOP OF LAYER 4

AVERAGES		0.6046 4.8923		 	1.3723 2.4750
STD. DEVIATIONS	2.9405 2.8317	2.0729 4.4379	1.4050 5.4351	 0.7065 4.9547	

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 100

	, , , , , , , , , , , , , , , , , , ,		
	 MM	CU. METERS	PERCENT
PRECIPITATION	462.27 (101.696)	4622.7	100.00
RUNOFF	82.250 (51.3747)	822.50	17.793
EVAPOTRANSPIRATION	304.539 (54.7062)	3045.39	65.879
PERCOLATION/LEAKAGE THROUGH LAYER 2	75.67147 (30.26457) 756.715	16.36958
AVERAGE HEAD ON TOP OF LAYER 2	1.229 (0.595)		
PERCOLATION/LEAKAGE THROUGH LAYER 4	75.64935 (25.13580) 756.493	16.36479
AVERAGE HEAD ON TOP OF LAYER 4	25.649 (22.422)		
CHANGE IN WATER STORAGE	-0.169 (1.1578)	-1.69	-0.037
*****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * *

	(MM)	(CU. METERS)
PRECIPITATION	156.70	1567.000
RUNOFF	124.417	1244.1724
PERCOLATION/LEAKAGE THROUGH LAYER 2	10.799844	107.99844
AVERAGE HEAD ON TOP OF LAYER 2	150.000	
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.413274	4.13274
AVERAGE HEAD ON TOP OF LAYER 4	271.025	
SNOW WATER	135.25	1352.4823
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	4710
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.	2100
*****	*****	* * * * * * * * * * * * * * * * * * * *

FINAL WATER	STORAGE AT EN	D OF YEAR 100			
LAYER	(CM)	(VOL/VOL)			
1	3.4229	0.2282			
2	25.6200	0.4270			
3	292.2212	0.2922			
4	290.3600	0.4270			
SNOW WATER	1.578				

* * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	< * * * * * * * *
* * * * * * * * * *	***************************************	*******
* *		* *
* *		* *
* *	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	* *
* *	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	* *
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	* *
* *	USAE WATERWAYS EXPERIMENT STATION	* *
* *	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	* *
* *		* *
* *		* *
* * * * * * * * * *	***************************************	*******
* * * * * * * * * *	***************************************	*******

PRECIPITATION DATA FILE:	C:\DC\DC2PP.D4
TEMPERATURE DATA FILE:	C:\DC\DC2TM.D7
SOLAR RADIATION DATA FILE:	C:\DC\DC2SLRD.D13
EVAPOTRANSPIRATION DATA:	C:\DC\DC2ET.D11
SOIL AND DESIGN DATA FILE:	C:\DC\DC4SOIL.D10
OUTPUT DATA FILE:	C:\DC\DC4OUT.OUT

TIME: 9:21 DATE: 4/14/2023

TITLE: 11213132 DAWSON CREEK LANDFILL - PLATEAU, MED PERM

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER

URE	NUMBER 12	
=	15.00	CM
=	0.4710	VOL/VOL
=	0.3420	VOL/VOL
=	0.2100	VOL/VOL
=	0.2830	VOL/VOL
=	0.41999999	7000E-04 CM/SEC
	= = = =	$\begin{array}{rcl} = & 0.4710 \\ = & 0.3420 \\ = & 0.2100 \\ = & 0.2830 \end{array}$

LAYER 2

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 0

	тотс	NORIDEIX 0
THICKNESS	=	60.00 CM
POROSITY	=	0.4270 VOL/VOL
FIELD CAPACITY	=	0.4180 VOL/VOL
WILTING POINT	=	0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.999999975000E-05 CM/SEC

LAYER 3

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXT	'URE	NUMBER 18	
THICKNESS	=	1000.00 CM	
POROSITY	=	0.6710 VOL/VOL	
FIELD CAPACITY	=	0.2920 VOL/VOL	
WILTING POINT	=	0.0770 VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.2920 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.10000005000E-02 CM/SE	C

LAYER 4

TYPE 3 - BARR	IER	SOIL LINER		
MATERIAL TEXI	URE	NUMBER 0		
THICKNESS	=	680.00	СМ	
POROSITY	=	0.4270	VOL/VOL	
FIELD CAPACITY	=	0.4180	VOL/VOL	
WILTING POINT	=	0.3670	VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.44999998	7000E-06	CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #12 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 1.% AND A SLOPE LENGTH OF 25. METERS.

SCS RUNOFF CURVE NUMBER	=	95.20	
FRACTION OF AREA ALLOWING RUNOFF	=	50.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.0000	HECTARES
EVAPORATIVE ZONE DEPTH	=	15.0	CM
INITIAL WATER IN EVAPORATIVE ZONE	=	4.245	CM
UPPER LIMIT OF EVAPORATIVE STORAGE	=	7.065	CM
LOWER LIMIT OF EVAPORATIVE STORAGE	=	3.150	CM
INITIAL SNOW WATER	=	2.347	CM

INITIAL WATER IN LAYER MATERIALS	=	612.225	CM
TOTAL INITIAL WATER	=	614.572	CM
TOTAL SUBSURFACE INFLOW	=	0.00	MM/YR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM DAWSON CREEK BC

STATION LATITUDE	=	55.70	DEGREES
MAXIMUM LEAF AREA INDEX	=	0.00	
START OF GROWING SEASON (JULIAN DATE)	=	130	
END OF GROWING SEASON (JULIAN DATE)	=	270	
EVAPORATIVE ZONE DEPTH	=	15.0	СМ
AVERAGE ANNUAL WIND SPEED	=	13.50	KPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	=	60.50	00
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	=	41.60	00
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	=	47.80	00
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	=	62.10	00

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SPOKANE WASHINGTON

NORMAL MEAN MONTHLY PRECIPITATION (MM)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
29.1	18.6	22.6	19.8	34.4	67.4
84.9	54.2	41.2	29.9	29.0	22.2

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SPOKANE WASHINGTON

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES CELSIUS)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
-13.2	-10.2	-5.0	3.5	9.3	13.6
15.5	14.4	9.8	3.3	-6.8	-11.1

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SPOKANE WASHINGTON AND STATION LATITUDE = 55.70 DEGREES

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC ----- ----- ----- ------ ------PRECIPITATION _____ 28.8618.9523.8019.6137.1962.2289.0664.7440.3728.3627.1421.97 TOTALS STD. DEVIATIONS12.148.2810.139.5719.1240.7267.0345.3221.3316.3113.337.81 RUNOFF ____ TOTALS 0.000 0.106 7.927 16.990 4.661 7.959 27.298 12.118 3.086 0.675 0.326 0.025 0.0000.5329.82915.5995.2709.40434.79914.5104.0631.0680.9440.200 STD. DEVIATIONS EVAPOTRANSPIRATION _____ 11.58613.41017.82211.00040.37642.58840.70538.35727.49920.11814.22212.910 TOTALS 1.994 2.286 2.810 6.929 15.953 25.799 STD. DEVIATIONS 22.076 24.521 16.821 10.110 3.675 1.922 PERCOLATION/LEAKAGE THROUGH LAYER 2 _____ 0.0000 0.0000 2.8901 12.6396 15.2791 9.9834 TOTALS 19.3918 17.2927 7.9557 4.5624 0.6492 0.0000 STD. DEVIATIONS 0.0000 0.0000 6.3632 11.9841 8.7909 10.7628 16.3568 15.8089 8.7977 6.8449 2.2673 0.0000 PERCOLATION/LEAKAGE THROUGH LAYER 4 _____ 3.8498 1.6956 1.7818 6.0526 10.6107 10.4192 TOTALS 9.5867 10.5408 10.8703 11.1086 8.3844 5.7433 STD. DEVIATIONS 5.3414 3.7523 3.4981 4.3014 2.5187 2.6666 3.9420 3.3682 2.4405 2.9361 4.7344 5.7013 _____ AVERAGES OF MONTHLY AVERAGED DAILY HEADS (CM) _____ DAILY AVERAGE HEAD ON TOP OF LAYER 2 _____ 0.0000 0.0000 0.0212 0.1655 0.2731 0.1672 AVERAGES

AVERAGE MONTHLY VALUES (MM) FOR YEARS 1 THROUGH 100

	0.4734	0.3425	0.0953	0.0352	0.0052	0.0000
STD. DEVIATIONS					0.1587 0.0226	

DAILY AVERAGE HEAD ON	TOP OF LAY	ER 4				
AVERAGES	1.4502	0.7337	0.4047	1.1796	3.1384	3.2340
	3.4879	5.6494	7.0419	6.1199	4.4695	2.7067
STD. DEVIATIONS	3.2039	2.3376	1.6144	1.8854	2.6962	2.6520
	3.1436	4.1198	5.2119	5.4347	5.1835	4.2577
* * * * * * * * * * * * * * * * * * * *	******	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * *

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 100

	MM	CU. METERS PERCENT
PRECIPITATION	462.27 (101.696)	4622.7 100.00
RUNOFF	81.171 (42.1197)	811.71 17.559
EVAPOTRANSPIRATION	290.592 (52.4513)	2905.92 62.862
PERCOLATION/LEAKAGE THROUGH LAYER 2	90.64408 (29.06356)	906.441 19.60852
AVERAGE HEAD ON TOP OF LAYER 2	1.316 (0.591)	
PERCOLATION/LEAKAGE THROUGH LAYER 4	90.64403 (22.39571)	906.440 19.60851
AVERAGE HEAD ON TOP OF LAYER 4	33.013 (25.443)	
CHANGE IN WATER STORAGE	-0.138 (1.1440)	-1.38 -0.030
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *

	(MM)	(CU. METERS)
PRECIPITATION	156.70	1567.000
RUNOFF	97.884	978.8351
PERCOLATION/LEAKAGE THROUGH LAYER 2	10.799844	107.99844
AVERAGE HEAD ON TOP OF LAYER 2	150.000	
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.404161	4.04161
AVERAGE HEAD ON TOP OF LAYER 4	268.776	
SNOW WATER	135.25	1352.4823
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	4710
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.	2100
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * *

FINAL WATER	STORAGE AT EN	D OF YEAR 100	
LAYER	(CM)	(VOL/VOL)	
1	3.6380	0.2425	
2	25.6200	0.4270	
3	292.0000	0.2920	
4	290.3600	0.4270	
SNOW WATER	1.578		

Appendix C Analytical Results (2021 Annual Monitoring Report)

TABLE 5a

Monitoring Well Summary

Peace River Regional District PRRD Landfill - Dawson Creek

	El	evation ^g (m	asl)				Depth (m)												
			19-May-21	14-Jul-21	06-Oct-21				19-May-2'	1		14-Jul-21			06-Oct-21				
Monitoring	Ground	Top of	Water	Water	Water	Grnd. to	Grnd. to	Top of	Grnd. to	Product	Top of	Grnd. to	Product	Top of	Grnd. to	Product	Hydraulic	Method	Stratigraphy of
Well	Surface	Casing	Level	Level	Level	Top of	Base of	Casing to	Water	Thickness	Casing to	Water	Thickness	Casing to	Water	Thickness	Conductivity		Screened Interval
						Screen	Screen	Water		(cm)	Water		(cm)	Water		(cm)	(m/s)		
DC-95-1		631.54	de	commission	ed												1E-07		
DC-19-1	630.92	631.84	630.08	629.71	629.35	1.5	3.0	1.77	0.84	ND	2.13	1.21	ND	2.50	1.57	ND			clay
DC-95-2	635.86	636.55	632.84	632.86	632.85			3.70	3.02	ND	3.69	3.00	ND	3.70	3.01	ND			
DC-98-1	631.59	632.53	630.26	630.00	630.01			2.27	1.33	ND	2.52	1.59	ND	2.52	1.58	ND	1E-04		
DC-98-2			de	commission	ed												5E-07		
DC-98-3	633.74	634.55	629.80	629.80	629.85			4.75	3.94	ND	4.76	3.94	ND	4.70	3.89	ND			
DC-98-5	652.36	653.18	641.16	642.45	648.63			12.03	11.20	ND	10.73	9.91	ND	4.56	3.73	ND	5E-06		
DC-99-1A																	3E-09		
DC-99-1B																	8E-09		
DC-99-2																	3E-08		
DC-BH101	651.83	652.78	643.01	641.81	641.14	13.2	15.8	9.77	8.82	ND	10.96	10.02	ND	11.63	10.69	ND			till/clay

Notes: - water level measured July 4, 2019

^g - elevations are geodetic

masl - metres above sea level

--- - not available

ND - not detected

TABLE 5b

Groundwater Quality Results - Field Parameters

Peace River Regional District PRRD Landfill - Dawson Creek

Monitoring Well	Sample Date	MSI Sample Number	Temp °C	Field pH	Field EC ²⁵ µS/cm	Field DO mg/L	ORP mV
DC-19-1	19-May-21	26254210519071	2.1	5.8	3905	9.3	180
DC-19-1	14-Jul-21	26254210714212	8.2	6.7	5500	1.4	55
DC-19-1	05-Oct-21	26254210714212	7.3	6.7	3836	0.5	-68
DC-19-1	05-001-21	202042110000011	7.5	0.7	3630	0.5	-00
DC-95-2	19-May-21	26254210519073	4.4	6.0	3609	6.5	9
DC-95-2	14-Jul-21	26254210714213	6.9	6.5	4995	1.1	30
DC-95-2	05-Oct-21	26254211005313	6.0	6.7	4032	4.3	120
DC-98-1	19-May-21	26254210519072	2.8	5.9	4381	8.0	-80
DC-98-1	14-Jul-21	26254210714211	7.2	6.9	5906	1.5	-115
DC-98-1	05-Oct-21	26254211005312	7.4	6.8	4136	0.8	-29
DC-98-3	05-Oct-21	WL only					
DC-98-5	05-Oct-21	WL only					
DC-BH101	19-May-21	26254210519074	8.7	6.0	4099	6.4	203
DC-BH101	14-Jul-21	26254210714214	11.6	6.9	3582	7.2	208
DC-BH101	05-Oct-21	26254211005314	5.4	7.5	3868		130
20 Billor	00 00021		0.1		2300		
B.C. CSR 375/96 - F	reshwater Aquat	ic Standards*	NS	NS	NS	NS	NS
B.C. CSR 375/96 - D			NS	NS	NS	NS	NS

Notes:

NS - not specified

²⁵ - field EC corrected to 25°C

* - Contaminated Sites Regulation 375/96 (Province of British Columbia February 2021)

Italics - indicates value does not meet applicable standards

TABLE 5c

Groundwater Quality Results - General and Inorganic Parameters

Peace River Regional District PRRD Landfill - Dawson Creek

Monitoring	Sample	MSI Sample	рΗ	EC	Ca	Mg	Na	K	CI	SO ₄	NO ₂ -N	NO ₃ -N	NO ₂ +NO ₃ -N	NH ₃ -N	Total PO ₄ -P	Orthophosphate	Sulphide as S	Sulphide as H ₂ S	T-Alkalinity	HCO ₃	Hardness	TDS	Phenol
Well	Date	Number		μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
DC-19-1	19-May-21	26254210519071	7.10	4150	554	227	297	9.7	173	1860	<0.020	<0.05	<0.07	<0.025	<0.05	<0.01	< 0.002	<0.002	621	757	2320	3490	<0.001
DC-19-1	14-Jul-21	26254210714212	6.98	4220	523	216	262	11	214	1840	<0.020	<0.05	<0.07	<0.025	<0.05	<0.01	< 0.002	< 0.002	635	775	2200	3450	<0.001
DC-19-1	05-Oct-21	26254211005311	6.82	4170	603	207	236	18	235	1800	<0.020	<0.05	<0.07	0.273	0.06	<0.01	0.002	0.002	670	816	2360	3500	<0.001
DC-95-2	19-May-21	26254210519073	7.12	3850	551	190	261	9.3	15.1	1960	<0.020	<0.05	<0.07	1.26	0.06	<0.01	<0.002	<0.002	543	663	2160	3310	0.001
DC-95-2	14-Jul-21	26254210714213	7.17	3740	512	176	241	8.4	14.6	1920	<0.020	<0.05	<0.07	1.3	<0.05	<0.01	<0.002	< 0.002	538	655	2000	3200	<0.001
DC-95-2	05-Oct-21	26254211005313	6.99	3860	547	188	259	9.3	14.1	2090	<0.020	<0.05	<0.07	1.44	0.08	<0.01	0.002	0.002	503	613	2140	3410	<0.001
DC-98-1	19-May-21	26254210519072	7.01	4620	421	256	343	148	307	504	<0.020	<0.05	<0.07	31.2	0.26	<0.01	0.008	0.009	1950	2380	2100	3180	0.003
DC-98-1	14-Jul-21	26254210714211	7.01	4520	320	237	334	160	311	340	<0.020	<0.05	<0.07	23.4	0.26	<0.01	0.003	0.003	1860	2270	1770	2840	0.005
DC-98-1	05-Oct-21	26254211005312	6.93	4560	419	238	313	120	330	616	<0.020	<0.05	<0.07	31.7	0.27	<0.01	0.005	0.005	2050	2500	2020	3300	0.001
DC-BH101	19-May-21	26254210519074	7.18	4480	577	244	341	9.6	7.6	2380	<0.020	0.97	0.97	0.191	0.09	0.02	<0.002	<0.002	562	685	2440	3900	<0.001
DC-BH101	14-Jul-21	26254210714214	7.26	4270	539	237	317	8.8	7.7	2370	<0.020	0.97	0.97	0.081	<0.05	0.02	<0.002	< 0.002	531	648	2320	3800	<0.001
DC-BH101	05-Oct-21	26254211005314	6.91	4260	545	253	319	9	7.6	2480	<0.020	2.6	2.6	0.032	0.09	<0.01	0.002	0.002	519	633	2400	3920	<0.001
B.C. CSR 375/96	- Freshwater	Aquatic Standards*	NS	NS	NS	NS	NS	NS	1500	Н	CI	400 ^{amph}	400 ^{amph}	pH/T	NS	NS	NS	0.02	NS	NS	NS	NS	2
B.C. CSR 375/96	- Drinking Wa	ater Standards*	NS	NS	NS	NS	200 ^{HH}	NS	250 ^{TAO}	500 ^{TAO}	1	10	10	NS	NS	NS	NS	0.05 ^{TAO}	NS	NS	NS	NS	1

NS - not specified

Cl - dependent on chloride value

H - standard level is dependent on hardness value

^{amph} - standard may not protect all amphibians

^{HH} - standard is specific to protection of human health

pH/T - standard pH and temperature dependant, 10°C is assumed, see B.C. CSR for standard information
 ^{TAO} - standard to protect against taste and odour concerns
 * - Contaminated Sites Regulation 375/96 (Province of British Columbia February 2021)

Italics - indicates value does not meet applicable standards

TABLE 5d

Groundwater Quality Results - Dissolved Metals

Peace River Regional District PRRD Landfill - Dawson Creek

Monitoring	Sample	MSI Sample	Al	Sb	As	Ва	Be	Bi	В	Cd	Cr	Со	Cu	Fe	Pb	Li	Mn	Hg	Мо	Ni	Se	Si	Ag	Sr	TI	Sn	Ti	U	V	Zn	Zr
Well	Date	Number	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
DC-19-1	19-May-21	26254210519071	0.014	< 0.0010	<0.0010	0.02	<0.0005	< 0.0020	0.19	0.00007	<0.0020	0.0008	<0.005	0.30	<0.0005	0.17	0.593	< 0.000005	<0.005	0.022	<0.0010	5.11	< 0.00005	2.49	< 0.00030	<0.005	<0.0020	0.022	< 0.0005	0.013	<0.005
DC-19-1	14-Jul-21	26254210714212	0.065	< 0.0010	<0.0010	0.03	< 0.0005	< 0.0020	0.3	0.00009	<0.0020	0.002	<0.005	0.84	<0.0005	0.18	1.34	< 0.000005	<0.005	0.029	<0.0010	6.09	< 0.00005	2.74	< 0.00030	<0.005	< 0.0020	0.021	0.0007	0.007	<0.005
DC-19-1	05-Oct-21	26254211005311	<0.01	<0.001	0.002	0.04	<0.0005	<0.002	0.43	<0.00005	<0.002	0.0068	<0.005	4.90	<0.0005	0.16	2.70	<0.000005	<0.005	0.032	<0.001	7.68	<0.00005	3.27	<0.0003	<0.005	<0.002	0.017	<0.0005	0.045	<0.005
DC-95-2	19-May-21	26254210519073	<0.01	<0.0010	<0.0010	0.01	<0.0005	<0.0020	0.44	<0.00005	<0.0020	0.007	<0.005	0.85	<0.0005	0.17	1.72	<0.000005	<0.005	0.011	<0.0010	6.58	<0.00005	4.36	<0.00030	<0.005	<0.0020	0.014	<0.0005	0.009	<0.005
DC-95-2	14-Jul-21	26254210714213	<0.01	< 0.0010	<0.0010	0.01	<0.0005	< 0.0020	0.45	0.00005	<0.0020	0.0067	<0.005	1.40	<0.0005	0.17	1.52	< 0.000005	<0.005	0.0095	<0.0010	6.48	< 0.00005	4.08	< 0.00030	<0.005	<0.0020	0.016	< 0.0005	0.006	<0.005
DC-95-2	05-Oct-21	26254211005313	<0.01	<0.001	<0.001	0.01	<0.0005	<0.002	0.41	<0.00005	<0.002	0.004	<0.005	1.50	<0.0005	0.16	1.55	<0.000005	<0.005	0.0075	<0.001	6.65	<0.00005	4.17	<0.0003	<0.005	<0.002	0.014	<0.0005	0.007	<0.005
DC-98-1	19-May-21	26254210519072	0.043	<0.0010	0.031	0.31	<0.0005	<0.0020	1.52	<0.00005	<0.0020	0.026	<0.005	62.2	<0.0005	0.14	2.46	<0.000005	<0.005	0.044	<0.0010	7.95	<0.00005	2.91	<0.00030	<0.005	<0.0020	0.0091	0.003	0.007	0.008
DC-98-1	14-Jul-21	26254210714211					<0.0005	< 0.0020	1.8	< 0.00005	<0.0020	0.025	<0.005	60.4	<0.0005	0.11	1.68	< 0.000005	<0.005	0.044	<0.0010	7.53	< 0.00005	2.52	< 0.00030	<0.005	<0.0020	0.008	0.003	0.006	0.01
DC-98-1	05-Oct-21	26254211005312	0.025	<0.001	0.035	0.26	<0.0005	<0.002	1.5	<0.00005	<0.002	0.025	<0.005	55.60	<0.0005	0.15	2.73	<0.000005	<0.005	0.046	<0.001	7.88	<0.00005	3.17	<0.0003	<0.005	<0.002	0.011	0.002	0.005	0.008
DC-BH101	19-May-21	26254210519074	0.086	<0.0010	<0.0010	0.02	<0.0005	<0.0020	0.3	0.0004	<0.0020	0.0006	0.006	0.20	0.0006	0.21	0.50	<0.000005	<0.005	0.017	<0.0010	5.97	<0.00005	4.88	<0.00030	<0.005	0.0053	0.045	<0.0005	0.017	<0.005
DC-BH101	14-Jul-21	26254210714214	0.025	< 0.0010	< 0.0010	0.01	< 0.0005	< 0.0020	0.31	0.0002	<0.0020	< 0.0005	<0.005	<0.05	< 0.0005	0.22	0.17	< 0.000005	<0.005	0.011	<0.0010	5.84	< 0.00005	4.86	< 0.00030	< 0.005	< 0.0020	0.0524	0.0006	0.007	< 0.005
DC-BH101	05-Oct-21	26254211005314	<0.01	<0.001	<0.001	0.01	<0.0005	<0.002	0.3	0.0024	<0.002	<0.0005	<0.005	<0.05	<0.0005	0.21	<0.02	0.000006	<0.005	0.0088	<0.001	6.04	<0.00005	4.73	<0.0003	<0.005	<0.002	0.044	<0.0005	0.013	<0.005
B.C. CSR 375/96 -	Freshwater Ad	quatic Standards*	NS	0.09	0.05	10	0.0015	NS	12	Н	0.01 ^{Cr6}	0.04	Н	NS	Н	NS	NS	0.00025	10	Н	0.02	NS	Н	NS	0.003	NS	1	0.085	NS	Н	NS
B.C. CSR 375/96 -	Drinking Wate	er Standards*	9.5 ^{HH}	0.006	0.01	1	0.008	NS	5	0.005	0.05 ^{Cr6}	0.001	1.5 ^{HH, WT}	6.5 ^{HH, IC2, WT}	0.01	0.008	1.5 ^{HH, IC2, WT}	0.001	0.25	0.08	0.01	NS	0.02	2.5	NS	2.5	NS	0.02	0.02	3 ^{HH}	NS

NS - not specified

- NS not specified
 H standard level is dependent on hardness value
 guideline value for Cr(VI)
 standard is specific to protection of human health
 standard applies to a site used for an industrial or commercial purpose or activity set out in Schedule 2
 standard may not address aesthetic (organoleptic) concerns related to drinking water quality. Water treatment may be required.
 * Contaminated Sites Regulation 375/96 (Province of British Columbia February 2021)
 Italics

TABLE 5e

Groundwater Quality Results - Hydrocarbons

Peace River Regional District

PRRD Landfill - Dawson Creek

Monitoring	Sample	MSI Sample	Benzene	Toluene	Ethylbenzene	Xylenes	Styrene	VPHw	VHw (C ₆ -C ₁₀)	EPHw (C ₁₀ -C ₁₉)	EPHw (C C)
Well	Date	Number	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	(C ₁₀ -C ₁₉) mg/L	(C ₁₉ -C ₃₂) mg/L
DC-19-1	19-May-21	26254210519071	<0.0010	<0.0005	<0.0010	<0.0010	<0.0010	<0.05	<0.05	<0.2	<0.2
DC-95-2	19-May-21	26254210519073	<0.0010	<0.0005	<0.0010	<0.0010	<0.0010	<0.05	<0.05	<0.2	<0.2
DC-98-1	19-May-21	26254210519072	<0.0010	<0.0005	<0.0010	<0.0010	<0.0010	<0.05	<0.05	<0.2	<0.2
DC-BH101	19-May-21	26254210519074	<0.0010	<0.0005	<0.0010	<0.0010	<0.0010	<0.05	<0.05	<0.2	<0.2
B.C. CSR 375/96 -	Freshwater Aq	uatic Standards**	0.4	0.005	2	0.3	0.72	1.5	15 ^{IWU}	5 ^{IWU}	NS
B.C. CSR 375/96 -	Drinking Wate	r Standards**	0.005	0.06 ^{WT}	0.14 ^{WT}	0.09	0.8	NS	15 ^{IWU}	5 ^{IWU}	NS

Notes:

NS - not specified

^{IWU} - standard is applicable to all sites, irrespective of water use

WT - standard may not address aesthetic (organoleptic) concerns related to drinking water quality. Water treatment may be required.

** - Contaminated Sites Regulation 375/96 (Province of British Columbia February 2021)

VPHw - does not include BTEX

VHw (C₆₋C₁₀) - includes BTEX

Italics - indicates value does not meet applicable standards

TABLE 5f

Surface Water Quality Results - Field Parameters

Peace River Regional District PRRD Landfill - Dawson Creek

Sample	Sample	MSI Sample	Temp	Field pH	Field EC ²⁵	Field DO	ORP	Field Turbidity
Point	Date	Number	°C		μS/cm	mg/L	mV	NTU
DC-SW2	19-May-21	26254210519077	17.1 ^{DW}	8.57	583	8.85	160	90.77
DC-SW2	14-Jul-21	26254210714219	22.7 DW	8.84	1277 Irr	10.28	118	68.86
DC-SW2	05-Oct-21	26254211005316	4	8.65	1062 Irr	1.2 FAL	126	23.89
DC-SW4	19-May-21	26254210519078						
DC-SW4	14-Jul-21	dry						
DC-SW4	05-Oct-21	dry						
DC-SW6	19-May-21	26254210519076	17.0 DW	7.94	586	8.64	152	83.83
DC-SW6	14-Jul-21	26254210714218	23.6 DW	8.28	2012 Irr	9.59	125	21.49
DC-SW6	05-Oct-21	26254211005318	2.9	8.19	962 Irr	9.69	128	37.5
DC-SW7	19-May-21	26254210519075	16.7 DW	8.29	671	9.53	167	88.56
DC-SW7	14-Jul-21	26254210714217	22.7 DW	9.2 ^{Irr}	1038 Irr	10.2	149	25.95
DC-SW7	05-Oct-21	26254211005317	3.7	9.3 ^{Irr}	1188 ^{Irr}	10.5	135	18.01
B.C. Approved WQG - I	Drinking Water (I	DW) ^{BCSW1}	15 ^{AO}	NS	NS	NS	NS	narrative
B.C. Approved WQG - F	reshwater Aqua	tic Life (FAL) ^{BCSW2}	narrative ^{mean}	narrative ^{mean}	NS	<8 ^{mean,LS}	NS	narrative
B.C. Approved WQG - I	rrigation Water ((Irr) ^{BCSW2}	natural ^{mean}	5.0-9.5 ^{mean}	NS	NS	NS	narrative
B.C. Approved WQG - I	ivestock Water	(LW) ^{BCSW2}	natural ^{mean}	5.0-9.5 ^{mean}	NS	NS	NS	narrative
B.C. Approved WQG - V	Vildlife Water (V	W) ^{BCSW2}	natural ^{mean}	NS	NS	NS	NS	narrative
B.C. Working WQG - Fr	eshwater Aquat	ic Life (FAL) ^{BCSW4}	NS	NS	NS	NS	NS	NS
B.C. Working WQG - Iri	rigation Water (In	rr) ^{BCSW4}	NS	NS	700 ^{mean,crop}	NS	NS	NS
B.C. Working WQG - Li	vestock Water (I	LW) ^{BCSW4}	NS	NS	NS	NS	NS	NS
B.C. Working WQG - W	ildlife Water (W	N) ^{BCSW4}	NS	NS	NS	NS	NS	NS

Notes:

- --- not analyzed
- NS not specified
- ²⁵ field EC corrected to 25°C
- ^{AO} aesthetic objective
- mean 30-day mean; calculated from at least 5 weekly samples taken in a period of 30 days
- crop guideline level is crop and soil dependent; criterion shown is most stringent value
- LS guideline is dependent upon life stage; criterion shown is most stringent value
- narrative see applicable guidelines for further details
- natural temperature should not change more than + or 1 deg C from natural ambient background.
- BCSW1 Source Drinking Water Quality Guidelines (B.C. ENV 2020)
- BCSW2 British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (B.C. ENV 2021)
- BCSW4 British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (B.C. ENV 2021)
- Italics indicates value does not meet Working Water Quality Guidelines
- Italics indicates value does not meet Approved Water Quality Guidelines

TABLE 5g

Surface Water Quality Results - General and Inorganic Parameters

Peace River Regional District

PRRD Landfill - Dawson Creek

Sample	e Sa	mple	MSI Sample	Lab pH	Lab EC	Са	Mg	Na	K	CI	SO4	NO ₂ -N	NO ₃ -N	NO ₂ /NO ₃ -N	NH ₃ -N	PO₄-P-T	Orthophosphate	Sulphide as S	Sulphide as H ₂ S	T-Alkalinity	HCO ₃	Hardness	TDS	TSS	Phenols
Point	D	ate	Number		µS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
DC-SW	2 19-N	/lay-21	26254210519077	8.4	625	61.1	26.8	30.5	7.2	35.3	150	<0.005	0.03	0.03	<0.025	0.24 DW,FAL	0.06	<0.002	<0.002	131	143	263	390	57	0.001
DC-SW	2 14	Jul-21	26254210714219	8.72	1120 Irr	75.5	44.2	88.6	11.1	124 ^{Irr}	196	<0.005	0.04	0.04	0.026	0.58 DW,FAL	0.41	0.004 FAL	0.004 FAL	229	241	371	677 ^{Irr}	29	<0.001
DC-SW:	2 05-0	Oct-21	26254211005316	8.44	1140 Irr	72.9	47.8	96.8	17.1	128 Irr	137	0.058	1.43	1.49	0.149 FAL	1.08 DW,FAL	1.01	0.004 FAL	0.004 FAL	277	317	379	667 ^{Irr}	27	<0.001
DC-SW4	4 19-N	lay-21	26254210519078	7.54	2800 Irr	398	146	165	13.0	135 ^{Irr}	1220 DW,FAL,LW	<0.020	<0.05	<0.07	<0.025	0.05 DW,FAL		0.002	0.002	335	408	1600	2280 Irr,LW	9	<0.001
DC-SW	6 19-M	lay-21	26254210519076	7.92	597	59.2	25.6	25.1	6.2	28.5	154	<0.005	0.02	0.02	<0.025	0.15 DW,FAL	<0.01	<0.002	<0.002	113	138	253	366	51	0.001
DC-SW	6 14	Jul-21	26254210714218	8.31	1760 Irr	162	82	117	10.2	175 FAL,Irr	482 FAL	< 0.005	<0.01	<0.01	<0.025	<0.05	<0.01	0.002	0.002	242	295	742	1170 Irr,LW	14	< 0.001
DC-SW	6 05-0	Oct-21	26254211005318	8.06	916 Irr	82.5	37	57.5	4.8	87.8	215	<0.005	0.01	0.01	<0.025	<0.05	<0.01	0.002	0.002	136	166	358	566 Irr	21	0.002
DC-SW DC-SW DC-SW	7 14	/lay-21 Jul-21 Dct-21	26254210519075 26254210714217 26254211005317	8.37 8.97 8.53	628 1000 ^{Irr} 1160 ^{Irr}	61.6 61 71.6	26.8 41.7 49	31 91.8 106	16.1	117 Irr	151 127 121	<0.005 <0.005 0.092	0.03 0.09 2.02	0.03 0.09 2.11	0.043 0.105 FAL 0.32 FAL	0.24 DW,FAL 0.86 DW,FAL 1.23 DW,FAL	0.06 0.7 1.12	0.002 0.006 FAL 0.005 FAL	0.002 0.006 FAL 0.005 FAL	129 233 294	143 215 322	264 324 380	391 595 ^{Irr} 682 ^{Irr}	59 26 9	<0.001 <0.001 <0.001
	d WQG - Drinkin			NS	NS	NS	NS	NS	NS	250 ^{AO}	500 ^{AO}	1 ^{MAC}	10 ^{MAC}	NS	NS	0.01 ^{L,AO}	NS	NS	NS	NS	NS	NS	NS	NS	NS
				arrative ^{mea}	NS	NS	NS	NS	NS	150 ^{mean}	H ^{SO4,mean}	CI ^{mean}	3 ^{mean}	NS	pH/T ^{mean}	0.005-0.015 ^L	NS	NS	NS	NS	NS	NS	NS	narrative	0.05 ST
	d WQG - Irrigati			5.0-9.5 ^{mean}	NS	NS	NS	NS	NS	100 ^{mean}	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	narrative	NS
B.C. Approve	d WQG - Livesto	ock Water (I	LW) ^{BCSW2}	5.0-9.5 ^{mean}	NS	NS	NS	NS	NS	600 ^{mean}	1000 ^{mean}	10 st	100 ST	100 ^{sт}	NS	NS	NS	NS	NS	NS	NS	NS	NS	narrative	NS
	d WQG - Wildlife			NS	NS	NS	NS	NS	NS	600 ^{mean}	NS	10 st	100 ST	100 ^{sт}	NS	NS	NS	NS	NS	NS	NS	NS	NS	narrative	NS
B.C. Working	WQG - Freshwa	ter Aquatic	: Life (FAL) ^{BCSW4}	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.002	0.002	narrative	NS	NS	NS	NS	NS
	WQG - Irrigation			NS	700 ^{mean,crop}	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	500 ^{mean,crop}	NS
	WQG - Livestoc			NS	NS	1000 ^{mean}	NS	NS	NS	NS	1000 ^{mean}	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1000 ^{mean}	NS
	WQG - Wildlife			NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Notes:

NS - not specified

^{animal} - guideline level is animal dependent; criterion shown is most stringent value

AO - aesthetic objective

- ^{mean} 30-day mean; calculated from at least 5 weekly samples taken in a period of 30 days
- crop guideline level is crop and soil dependent; criterion shown is most stringent value
- Cl dependent on chloride value
- H dependent on hardness value
- ^L guideline applies to lakes only
- MAC maximum acceptable concentration

narrative - see applicable guidelines for further details

- pH/T dependent on pH and temperature values, most stringent guideline of 0.102 mg/L applied, see applicable guideline for further details
- ^{SO4} guideline level is hardness dependent; hardness values greater than 250 mg/L need to be determined based on site water
- BCSW1 Source Drinking Water Quality Guidelines (B.C. ENV 2020)
- BCSW2 British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (B.C. ENV 2021)
- BCSW4 British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (B.C. ENV 2021)
- *Italics* indicates value does not meet Working Water Quality Guidelines
- Italics indicates value does not meet Approved Water Quality Guidelines

TABLE 5h Surface Water Quality Results - Total Metals

Peace River Regional District PRRD Landfill - Dawson Creek

Sample	Sample	MSI Sample	Al	Sb	As	Ba	Be	Bi	В	Cd	Cr	Cr3+ ^	Cr6+ ^	Co	Cu	Fe	Pb	Li	Mn	Hg	Мо	Ni	Se	Si	Ag	Sr	TI	Sn	Ti	U	V	Zn	Zr
Point	Date	Number	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
DC-SW2	19-May-21	26254210519077	1.03	0.0003	0.00232	0.0859	0.00007	<0.0001	0.07	0.00007	0.0018 FAL		<0.01	0.0016 DW	0.0055	2.87 DW,FAL			0.0807 DW	0.00001	0.00093	0.0112	0.0004	2.36	<0.00005	0.204	0.00001	<0.0001	0.0108	0.0012	0.0044	0.0181	0.0009
DC-SW2	14-Jul-21	26254210714219	0.846	0.0005	0.00547 FAI		<0.00005			0.00004	0.0016 FAL			0.0019 DW	0.0033	1.73 DW,FAL			0.0983 DW	<0.000005	0.00211	0.0143	0.0005	2.31	<0.00005	0.355	0.00002	<0.0001	0.016	0.00231	0.0054	0.0086	
DC-SW2	05-Oct-21	26254211005316	0.251	0.0005	0.00403	0.0337	<0.00005	<0.0001	0.26	0.00003	0.0006	<0.0005	<0.01	0.0017 DW	0.0026	0.728 DW	0.0004	0.0297	0.0801 DW	<0.000005	0.00199	0.015	0.0003	0.92	<0.00005	0.362	<0.00001	<0.0001	0.0043	0.00179	0.0035	0.0096	<0.0005
DC-SW4	19-May-21	26254210519078	0.037	<0.0002	0.00091	0.0342	<0.00010	<0.0002	0.466	<0.00002	<0.0010	<0.0005	<0.01	0.0009	0.001	0.758 DW	<0.0002	0.0509	0.677 DW,Irr	<0.000005	0.00097	0.0065	0.0003	3.04	<0.00010	1.58	<0.00002	<0.0002	<0.0010	0.00695	<0.0002	<0.0020	<0.0010
DC-SW6	19-May-21	26254210519076	1.24	0.0003	0.00239	0.093	0.00008	<0.0001	0.049	0.00007	0.0023 FAL	<0.0005	<0.01	0.0016 DW	0.006	3.46 DW,FAL	0.0015	0.012	0.0842 DW	0.000009	0.00096	0.011	0.0004	3.37	< 0.00005	0.198	0.00002	<0.0001	0.0144	0.00116	0.0053	0.0193	0.001
DC-SW6	14-Jul-21	26254210714218	0.393	0.0004	0.00143	0.0972	< 0.00005	< 0.0001	0.114	0.00004	0.0008			0.0006	0.0042	0.383 DW	0.0003	0.0345	0.0662 DW	< 0.000005	0.0028	0.0067	0.0007	1.29	< 0.00005	0.723	0.00004	< 0.0001	0.019	0.00581	0.0017	0.005	0.0008
DC-SW6	05-Oct-21	26254211005318	0.494	0.0002	0.00087	0.0578	<0.00005	<0.0001	0.053	0.00003	0.0012 FAL	<0.0005	<0.01	0.0006	0.0033	0.779 DW	0.0005	0.0179	0.0382 DW	<0.000005	0.00167	0.0065	0.0003	1.26	<0.00005	0.415	0.00002	<0.0001	0.0156	0.00197	0.0021	0.0073	0.0012
DC-SW7	19-May-21	26254210519075	1.14	0.0003	0.00246	0.0862	0.00009	<0.0001	0.07	0.00006	0.002 FAL	<0.0005	<0.01	0.0016 DW	0.0055	3.11 DW,FAL	0.0014	0.0134	0.0859 DW	0.00001	0.00101	0.011	0.0004	3.54	<0.00005	0.204	0.00002	<0.0001	0.0134	0.00123	0.0048	0.0167	0.0009
DC-SW7	14-Jul-21	26254210714217	0.402	0.0005	0.00484		< 0.00005		0.277	0.00002	0.0008			0.0014 DW	0.0016	0.814 DW	0.0004	0.026	0.0636 DW	< 0.000005	0.00172	0.0139	0.0005	0.88	< 0.00005		< 0.00001	< 0.0001	0.0085	0.00141	0.0034		0.0006
DC-SW7	05-Oct-21	26254211005317	0.128	0.0005	0.00423		<0.00005	<0.0001	0.29	0.00002	<0.0005	<0.0005	<0.01	0.0017 DW	0.0015	0.435 DW	0.0002	0.0303	0.0743 DW	<0.000005	0.00196	0.0154	0.0004	0.65	<0.00005		<0.00001	<0.0001	0.0024	0.00172	0.0036		<0.0005
B.C. Approved WQ	G - Drinking Wat	or (DWI)BCSW1	9.5 ^{MAC}	0.006 ^{MAC}	0.01 ^{MAC}	NS	NS	NS	5 ^{MAC}	0.005 ^{MAC}	0.05 ^{MAC}	NS	NS	0.001 ^{MAC}	1 ^{AO}	0 3 ^{AO}	0.005 ^{MAC}	NS	0.02 ^{AO}	0.001 ^{MAC}	0.088 ^{MAC}	0.08 ^{MAC}	0.01 ^{MAC}	NS	NS	NS	NS	NS	NS	0.02 ^{MAC}	NS	2 ^{MAC}	NS
		quatic Life (FAL) ^{BCSW2}	NS ^{DM}	NS	0.01	NS	NS	NS	1 2 ^{mean}	NSDM	NS	NS	NS	0.001 ^{mean}	NSDM	1.0 ST	u ^{mean}	NS	H ^{mean}	MoHamean	7 6 ^{mean}	NS	0.01 ^{mean}	NS	Hmean	NS	NS	NS	NS	NS	NS	u ^{mean}	NS
B.C. Approved WQ			5	NS	0.005	NS	NS	NS	o 5 ^{mean,crop}	NS	NS	NS	NS	NS	0.2 ST	NS	0.2 ST	NS	NS		0.01 ^{mean,crop}	NS	0.001 ^{mean}	NS	NS	NS	NS	NS	NS	NS	NS	soil nH	NS
B.C. Approved WQ			5	NS	0.025 ST	NS	NS	NS	5 ^{mean}	NS	NS	NS	NS	NS	0.2 ^{mean}	NS	0.2 0.1 ST	NS	NS	0.002	0.016	NS	0.01 ^{mean}	NS	NS	NS	NS	NS	NS	NS	NS	2 ^{mean}	NS
B.C. Approved WQ			5	NS	0.025 ST	NS	NS	NS	5 E ^{mean}	NS	NS	NS	NS	NS	0.3 ^{mean}	NS	0.1 ST	NS	NS	Moldamean	0.010	NS	0.00 ^{mean}	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		uatic Life (FAL) ^{BCSW4}	NS	0 000 ^{mean,Sb}	3 NS	, mean	0.00012 ^{meal}	NS NS	NS	NS	0 001 mean, Cr6	0.0000 ^{Cr3}	0.001 ^{Cr6}	NS	NS	NS	NS	NS	NS	NS	NS	umean	NS	NS	NS	NS	0 0009 ^{mean,Ri}	V NS	NS	0.0095 ^{mean}	NS	NS	NS
B.C. Working WQG B.C. Working WQG			NS	NS	NS	NS	0.00013	NS	NS		0.001 mean,Cr3	0.0009	0.001	0 0 mean,CU	NS	NS	NS	0 7 mean, crop	o o ^{mean}	NS	NS	n o o ^{mean}	NS	NS	NS	NS	NS	NS	NS	0.0005	o 4 ^{mean}	NS	NS
B.C. Working WQG			NS	NS	NS	NS	0.1 ^{mean}	NS	NS	0.0051	0.0049	0.0049	0.000	4 mean	NS	NS	NS	NS	NS	NS	NS	1 mean	NS	NS	NS	NS	NS	NS	NS	0.01	0.1 ^{mean}	NS	NS
			NS	NS	NS	NS	NS NS	NS	NS	0.000	NC	0.05	0.05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NC	NS	NS NS	NS	NS
B.C. Working WQG	- wildlife water		ri S	NS	NS	US	NS	NS	NO	NO	NO	NS	NS	NS	ris-	NO	riə	NO	NS	NS	NS	CVI	NS	TNO	NO	CP1	NO	NO	NO	NS	NO	NO	NO

Notes: NS - not specified ^{AO} - aesthetic objective ^{mean} - 30-day mean; calculated from at least 5 weekly samples taken in a period of 30 days ^{COA} - withdrine is for total Cr³⁺

- 30-day mean; calculated from at least 5 weekly samples taken in a period of 30 days
 3u-day mean; calculated from at least 5 weekly samples taken in a period of 30 days
 guideline is for total Cr³⁺
 guideline is for total Cr⁴⁺
 guideline level is crop-dependent; criterion shown is most stringent value
 continuous or intermittent use on all soils, see applicable guideline for further details
- DM guideline available for dissolved metal

- Guideline available for dissolved metal
 H guideline is hardness dependent
 MAC maximum acceptable concentration
 ST short-term acute guideline
 MeHg guideline dependent upon concentration of MeHg (assumed to be ≤0.5 % where no value provided); see applicable guideline for further details
 ^{RW} 30-day average, site-specific objective for the lower Columbia River, BC

- 30-day average, site-specific objective for the lower continue receiped
 30-day average, site-specific objective for the lower continue receiped
 solid PL guideline is for Sb³⁺
 there is no acid digestion method available to recover speciated chromium, these soluble analytes are reported as dissolved
 Source Drinking Water Quality Guidelines (B.C. ENV 2020)
- BCSW2 British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (B.C. ENV 2021)
 BCSW4 British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (B.C. ENV 2021)
- Italics indicates value does not meet Working Water Quality Guidelines Italics indicates value does not meet Approved Water Quality Guidelines

TABLE 5i

Surface Water Quality Results - Hydrocarbons

Peace River Regional District PRRD Landfill - Dawson Creek

Sample Point	Sample Date	MSI Sample Number	Benzene	Toluene	Ethylbenzene	Xylenes	Styrene	VPHw (C ₆ -C ₁₀)	VHw (C ₆ -C ₁₀)	EPHw (C ₁₀ -C ₁₉)	EPHw (C ₁₉ -C ₃₂)
r onte	Buto	Humber	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
DC-SW2	19-May-21	26254210519077	<0.0010	<0.0005	<0.0010	<0.0010	<0.0010	<0.05	<0.05	<0.2	<0.2
DC-SW4	19-May-21	26254210519078	<0.0010	<0.0005	<0.0010	<0.0010	<0.0010	<0.05	<0.05	<0.2	<0.2
DC-SW6	19-May-21	26254210519076	<0.0010	<0.0005	<0.0010	<0.0010	<0.0010	<0.05	<0.05	<0.2	<0.2
DC-SW7	19-May-21	26254210519075	<0.0010	<0.0005	<0.0010	<0.0010	<0.0010	<0.05	<0.05	<0.2	<0.2
B.C. Approved WC	QG - Drinking Wate	er (DW) ^{BCSW1}	0.005 ^{MAC}	0.024 ^{AO}	0.0016 ^{AO}	0.02 ^{AO}	NS	NS	NS	NS	NS
B.C. Approved W	QG - Freshwater A	quatic Life (FAL) ^{BCSW2}	0.04 ^{mean}	0.0005 ^{mean}	0.2 ^{mean}	0.03 ^{mean}	NS	NS	NS	NS	NS
B.C. Approved W0	QG - Irrigation Wat	ter (Irr) ^{BCSW2}	NS	NS	NS	NS	NS	NS	NS	NS	NS
B.C. Approved W0			NS	NS	NS	NS	NS	NS	NS	NS	NS
B.C. Approved W0	QG - Wildlife Wate	r (WW) ^{BCSW2}	NS	NS	NS	NS	NS	NS	NS	NS	NS
B.C. Working WQ	G - Freshwater Aq	uatic Life (FAL) ^{BCSW4}	NS	NS	NS	NS	0.072	NS	NS	NS	NS
B.C. Working WQ	G - Irrigation Wate	er (Irr) ^{BCSW4}	NS	NS	NS	NS	NS	NS	NS	NS	NS
B.C. Working WQ	G - Livestock Wate	er (LW) ^{BCSW4}	NS	NS	NS	NS	NS	NS	NS	NS	NS
B.C. Working WQ	G - Wildlife Water	(WW) ^{BCSW4}	NS	NS	NS	NS	NS	NS	NS	NS	NS

Notes:

NS - not specified

AO - aesthetic objective

mean - 30-day mean; calculated from at least 5 weekly samples taken in a period of 30 days

MAC - maximum acceptable concentration

VPHw (C₆-C₁₀) - does not include BTEX BCSW1 - Source Drinking Water Quality Guidelines (B.C. ENV 2020)

BCSW2 - British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (B.C. ENV 2021)

BCSW4 - British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (B.C. ENV 2021)

Italics - indicates value does not meet Working Water Quality Guidelines

Italics - indicates value does not meet Approved Water Quality Guidelines

TABLE 5j

Surface Water Quality Results - Microbiological Parameters

Peace River Regional District

PRRD Landfill - Dawson Creek

Sample Point	Sample Date	MSI Sample Number	Faecal Coliforms CFU/100mL	Total Coliforms CFU/100mL
DC-SW2	19-May-21	26254210519077	10 LW	70
DC-SW2	14-Jul-21	26254210714219	100 DW,FAL,LW	100
DC-SW2	05-Oct-21	26254211005316	160 DW,FAL,LW	190
DC-SW4	19-May-21	26254210519078	<10	330
DC-SW6	19-May-21	26254210519076	40 DW,FAL,LW	500
DC-SW6	14-Jul-21	26254210714218	<10	20
DC-SW6	05-Oct-21	26254211005318	10 LW	60
DC-SW7	19-May-21	26254210519075	20 DW,FAL,LW	180
DC-SW7	14-Jul-21	26254210714217	80 DW,FAL,LW	80
DC-SW7	05-Oct-21	26254211005317	3000 DW,FAL,Irr,LW	3000
B.C. Approved WQG	- Drinking Water (D	DW) ^{BCSW1}	10 ^{MAC}	NS
B.C. Approved WQG	- Freshwater Aquat	tic Life (FAL) ^{BCSW2}	14 ^{mean,shell}	NS
B.C. Approved WQG	- Irrigation Water (Irr) ^{BCSW2}	200 ^{geo,irr}	NS
B.C. Approved WQG	- Livestock Water ((LW) ^{BCSW2}	0 ^{animal}	NS
B.C. Approved WQG	- Wildlife Water (W	W) ^{BCSW2}	NS	NS
B.C. Working WQG -	Freshwater Aquati	c Life (FAL) ^{BCSW4}	NS	NS
B.C. Working WQG -	Irrigation Water (Ir	r) ^{BCSW4}	NS	NS
B.C. Working WQG -	Livestock Water (L	.W) ^{BCSW4}	NS	NS
B.C. Working WQG -	Wildlife Water (WV	V) ^{BCSW4}	NS	NS

Notes:

CFU - colony forming units

NS - not specified

^{mean} - 30-day mean; calculated from at least 5 weekly samples taken in a period of 30 days

^{animal} - guideline level is enclosure-dependent; criterion shown is most stringent value

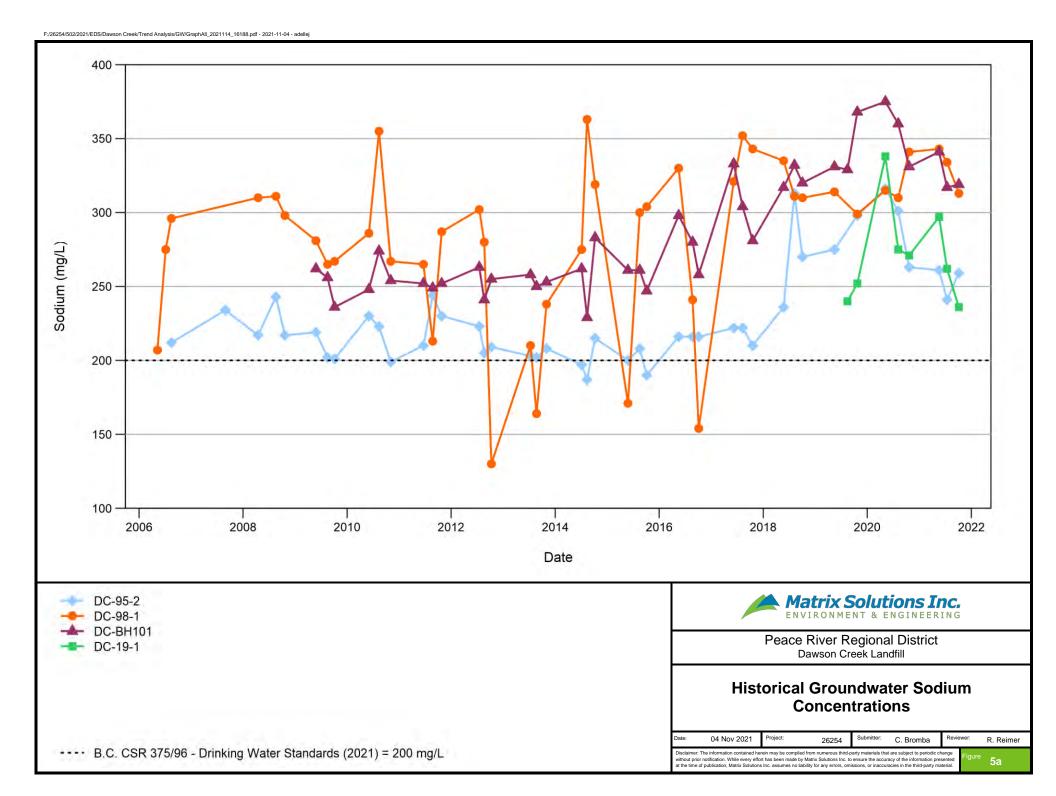
geo - geometric mean

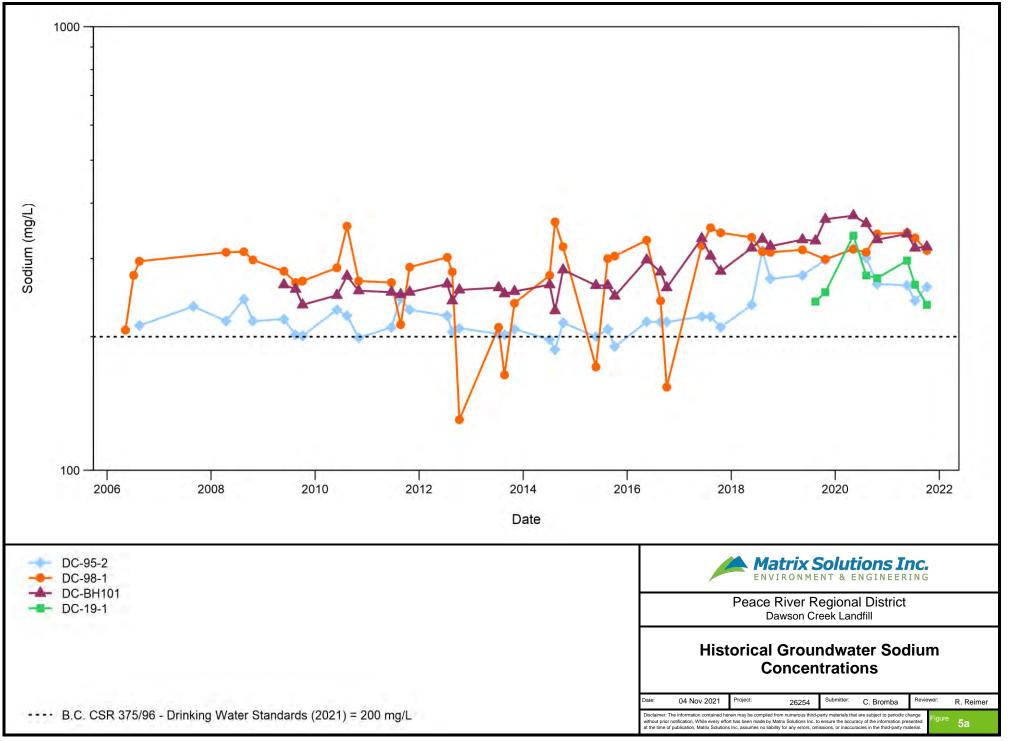
 $^{\mbox{\scriptsize MAC}}$ - maximum acceptable concentration

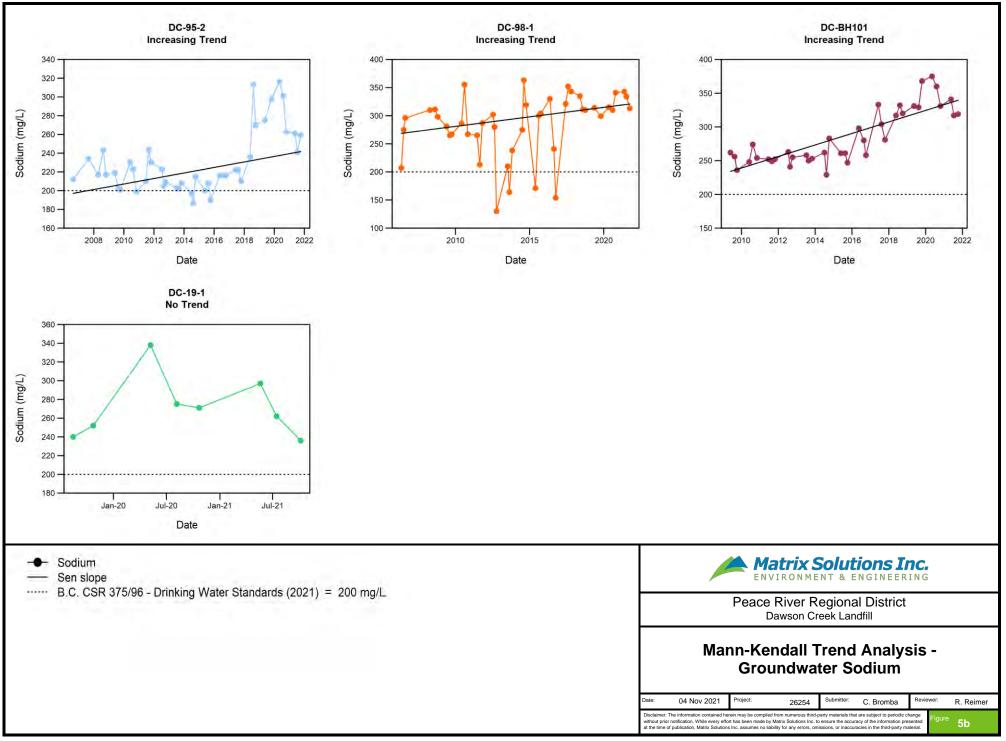
shell - shelfish harvesting

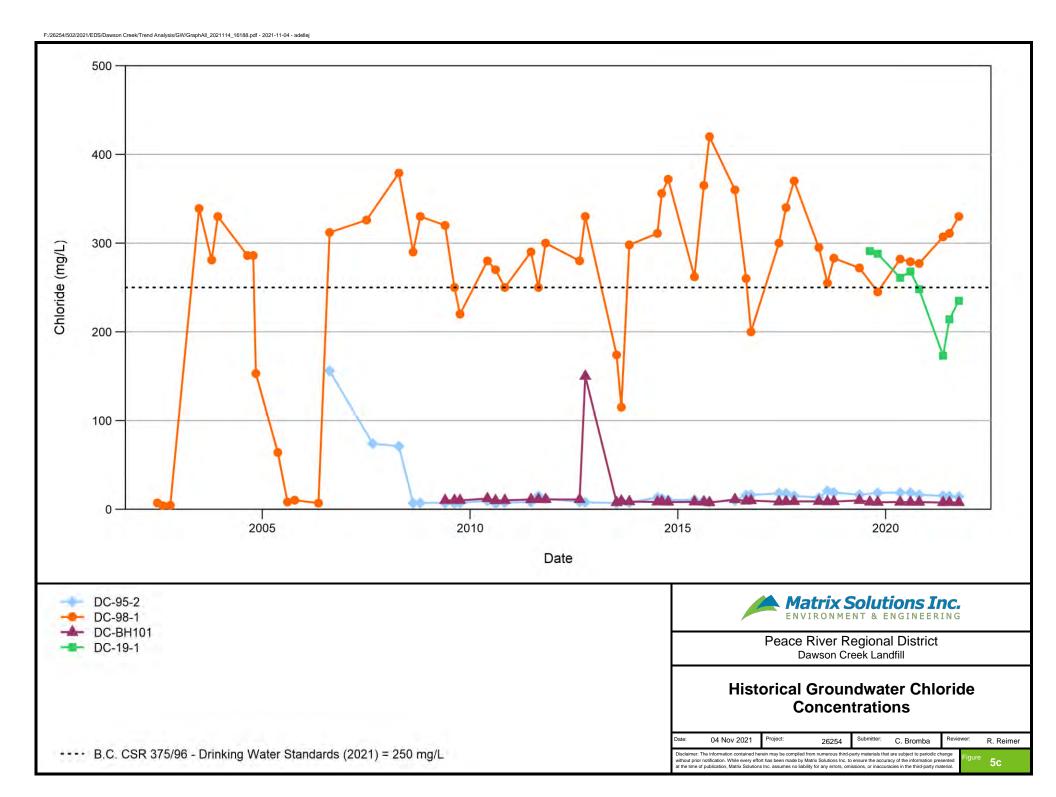
BCSW1 - Source Drinking Water Quality Guidelines (B.C. ENV 2020)

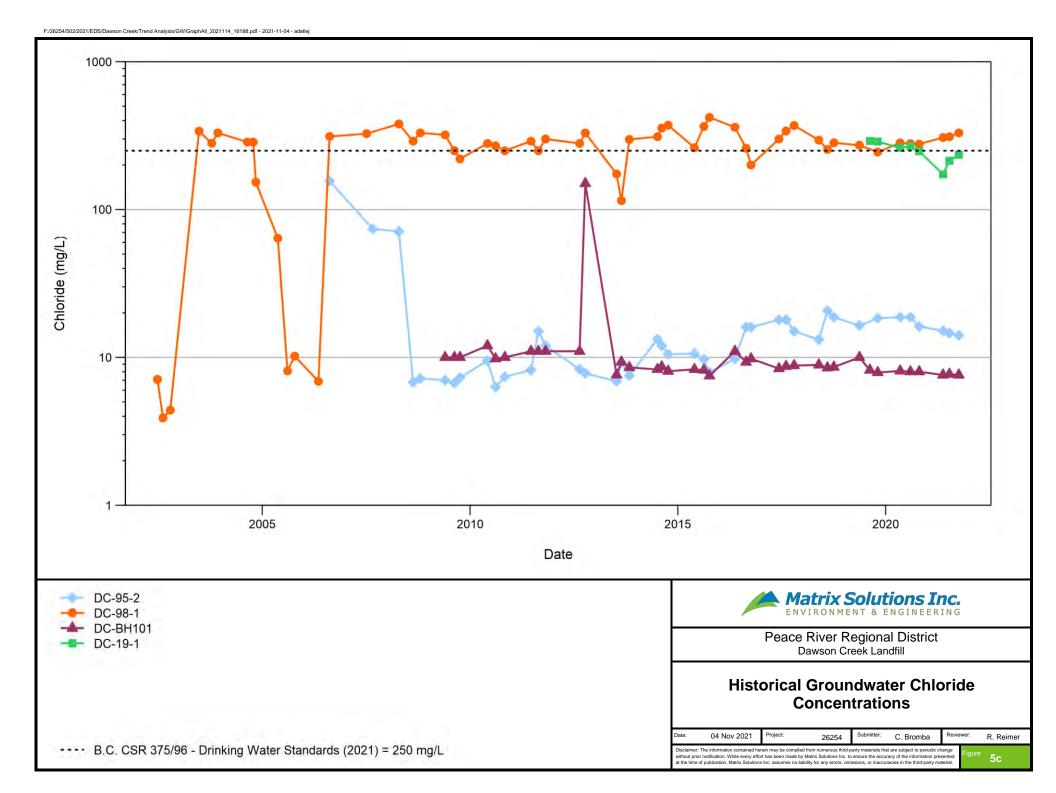
BCSW2 - British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (B.C. ENV 2021)

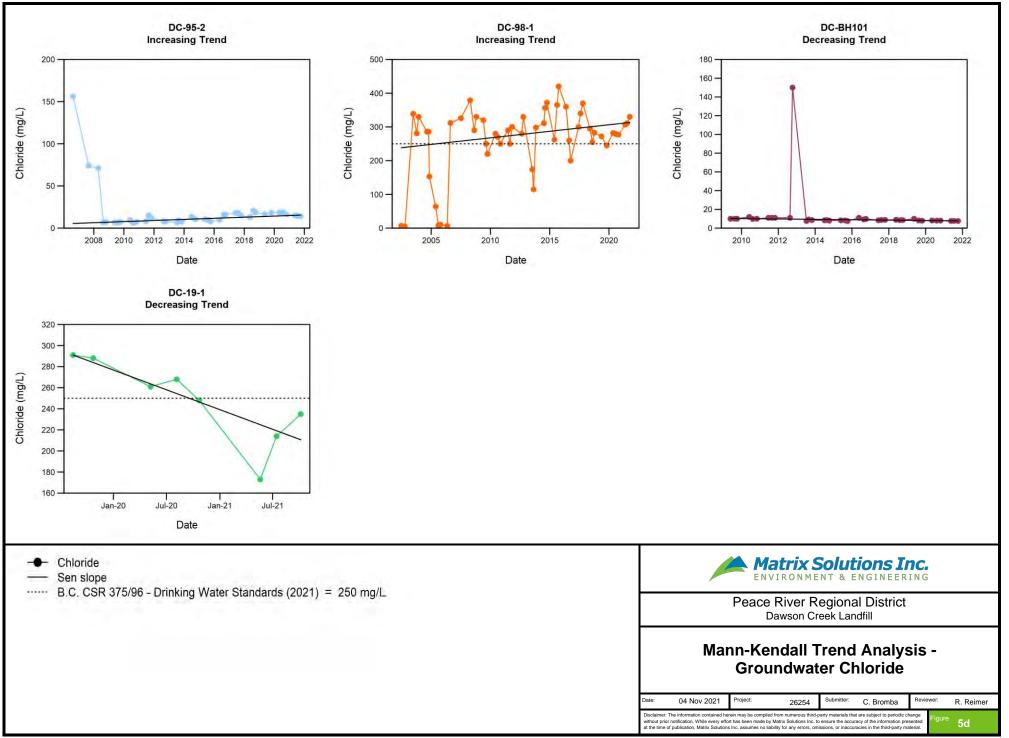

BCSW4 - British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (B.C. ENV 2021)

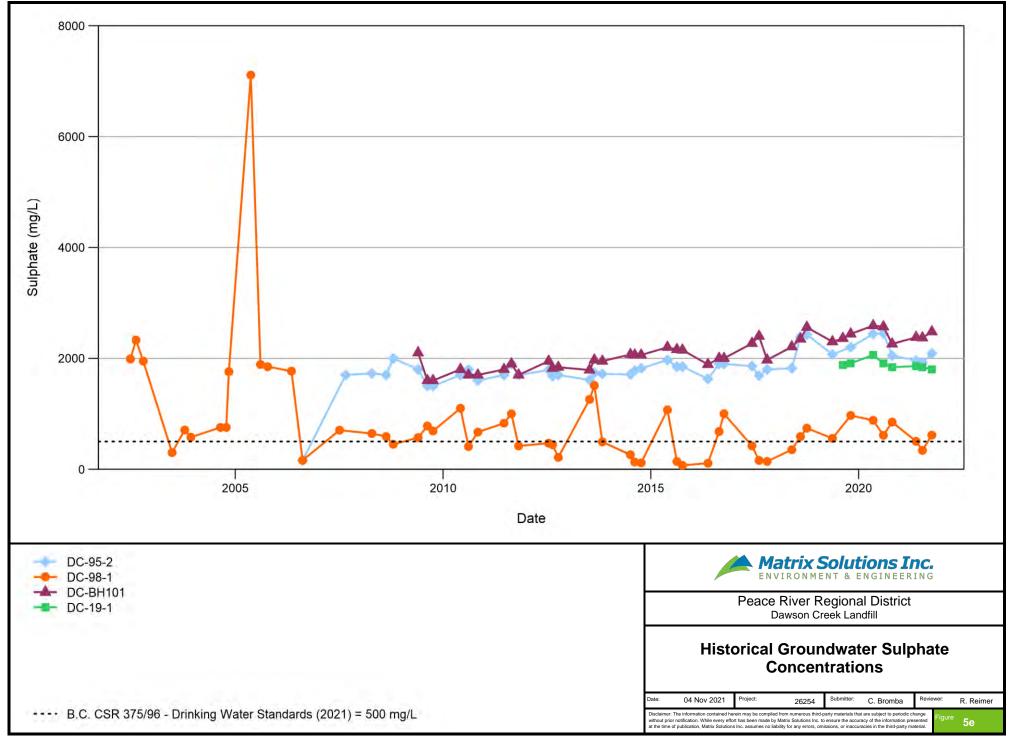

Italics - indicates value does not meet Working Water Quality Guidelines

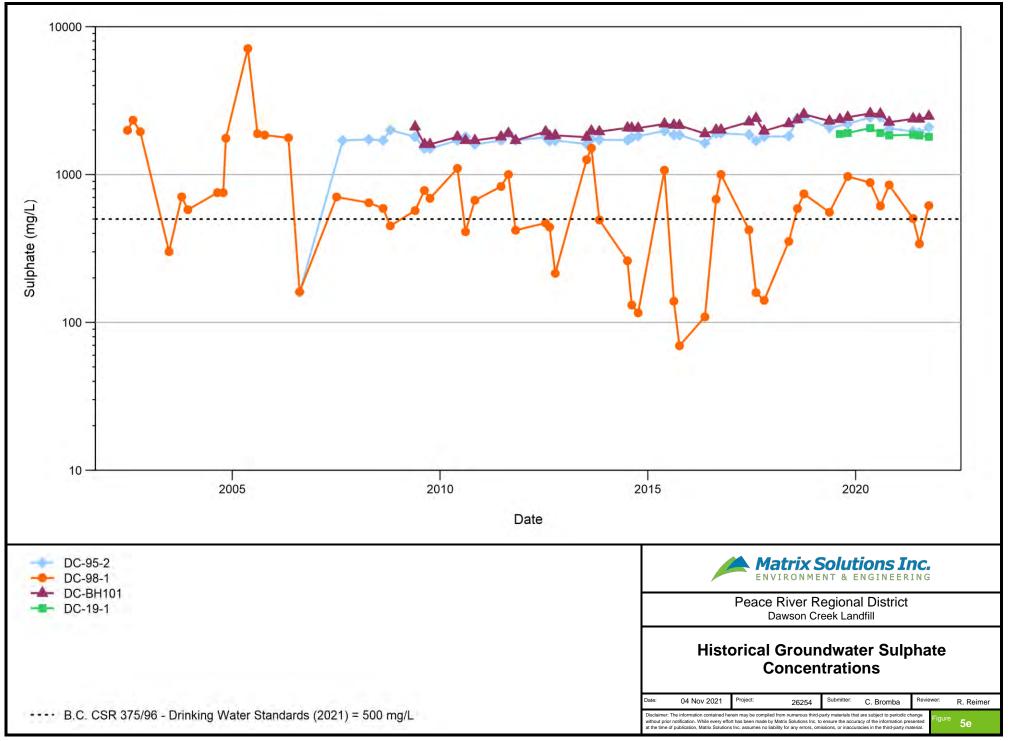

Italics - indicates value does not meet Approved Water Quality guidelines, resampling is recommended to confirm the presence of coliforms

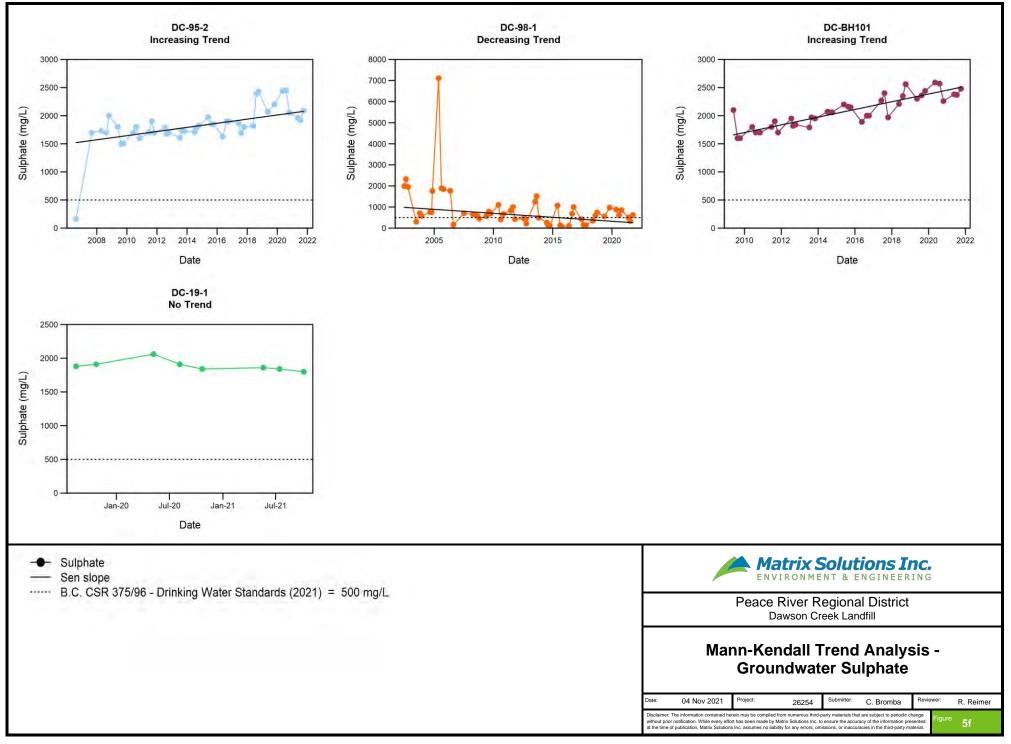

Appendix D

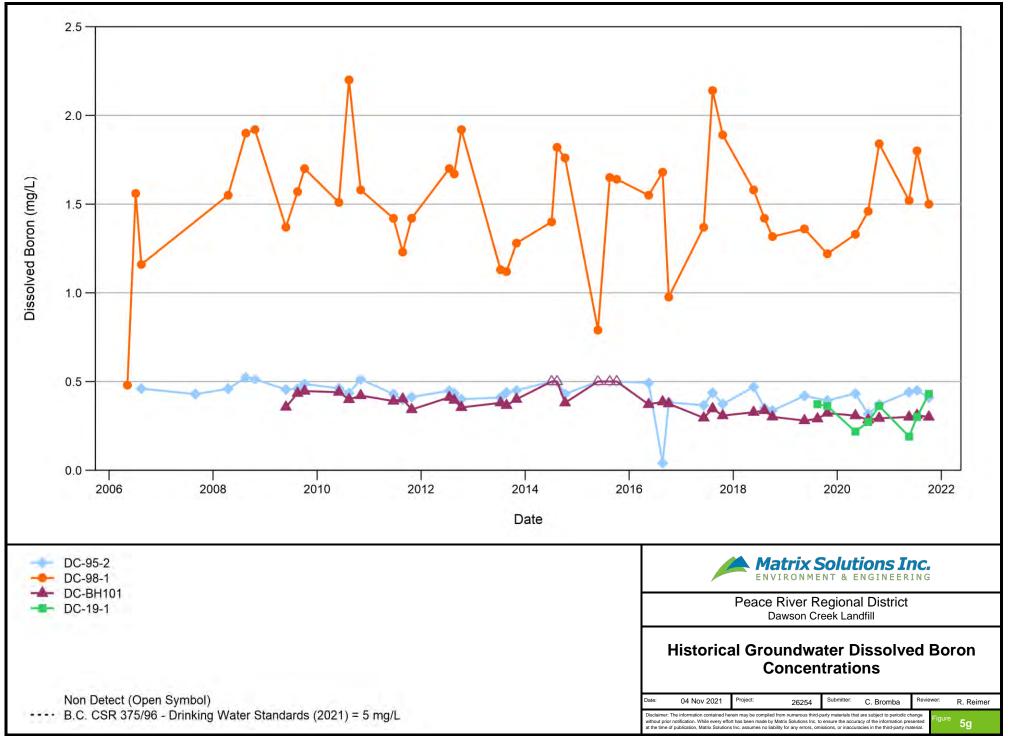

Historical groundwater and Surface Water Concentration Versus Time Plots (2021 Annual Monitoring Report)

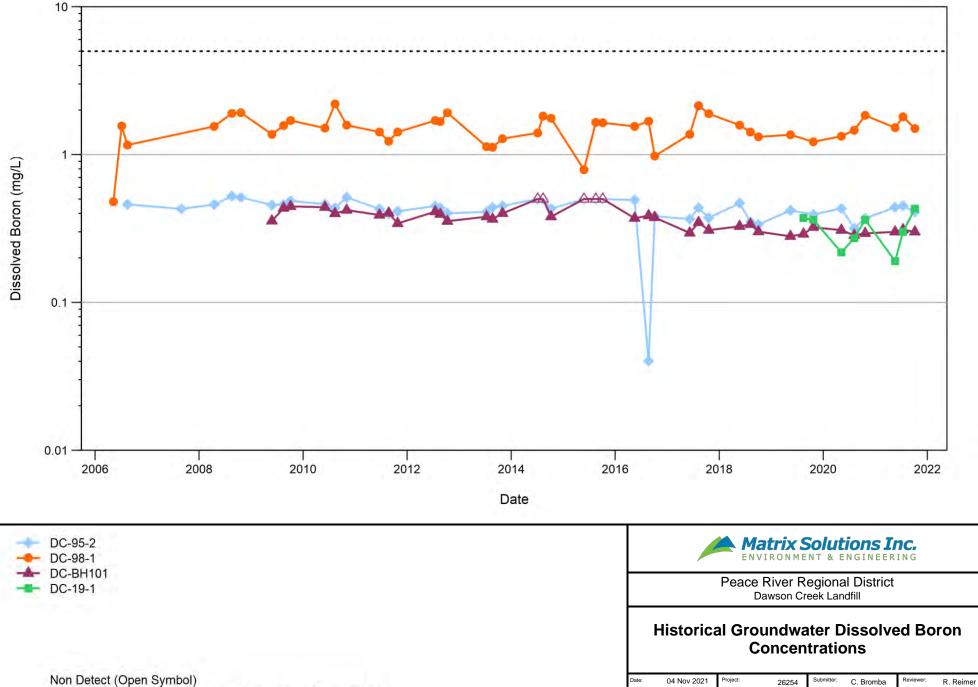


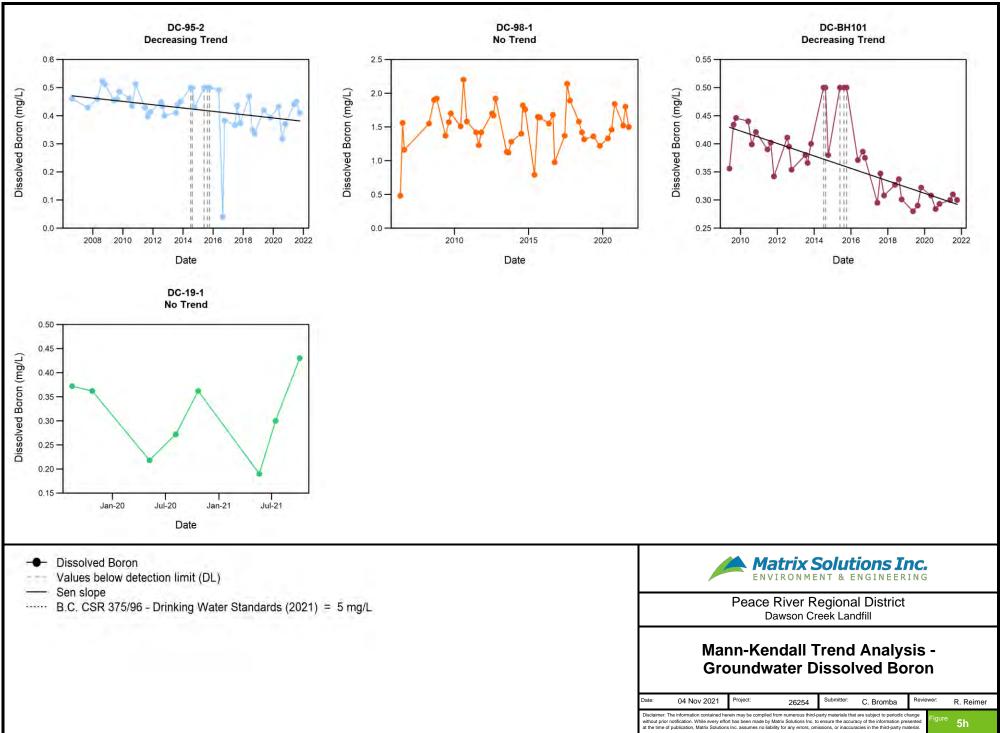


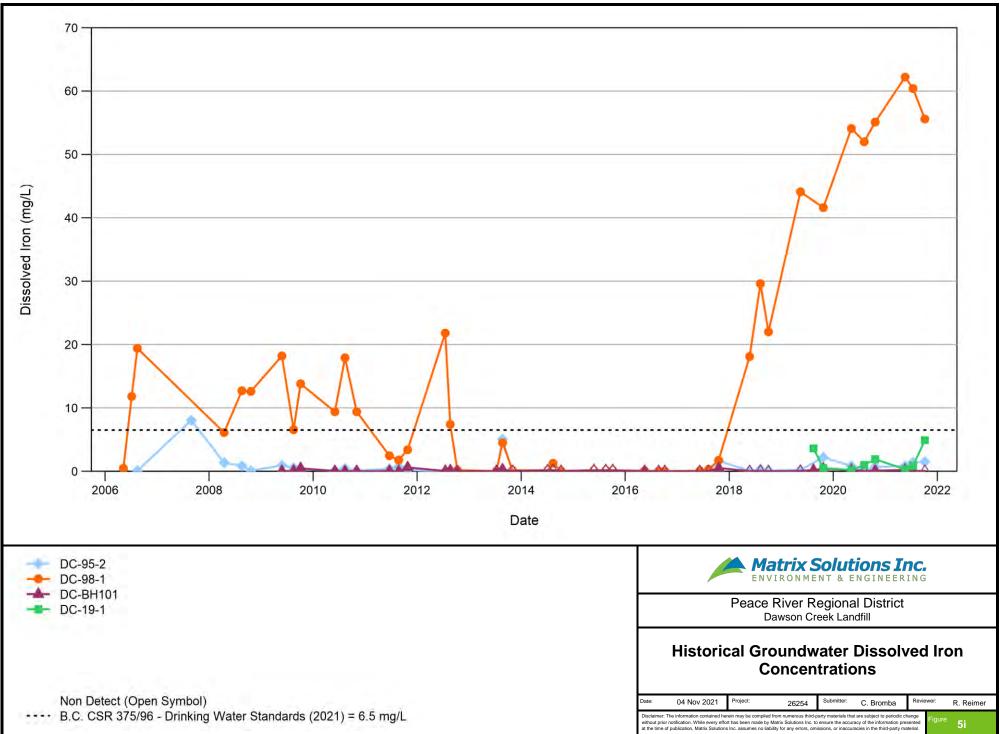


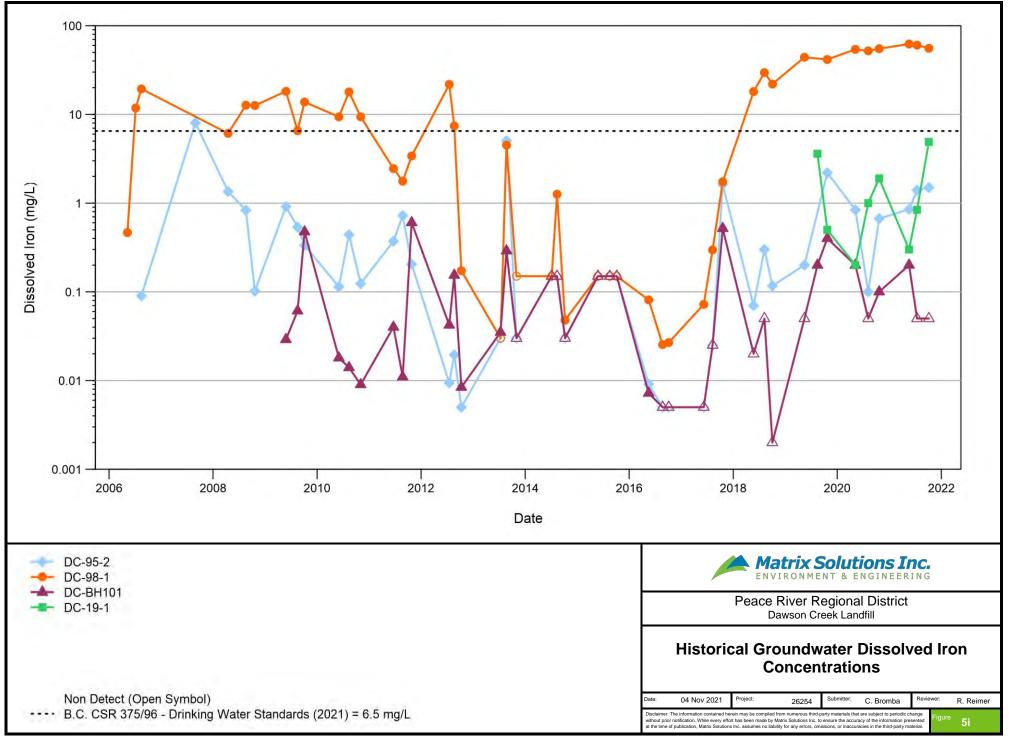


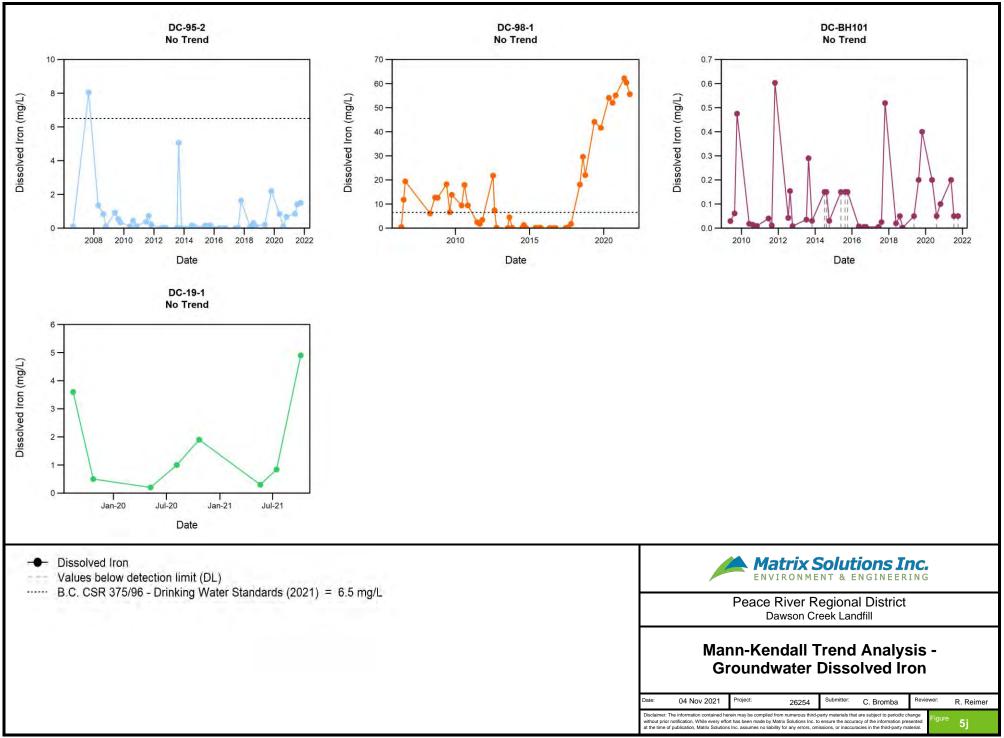


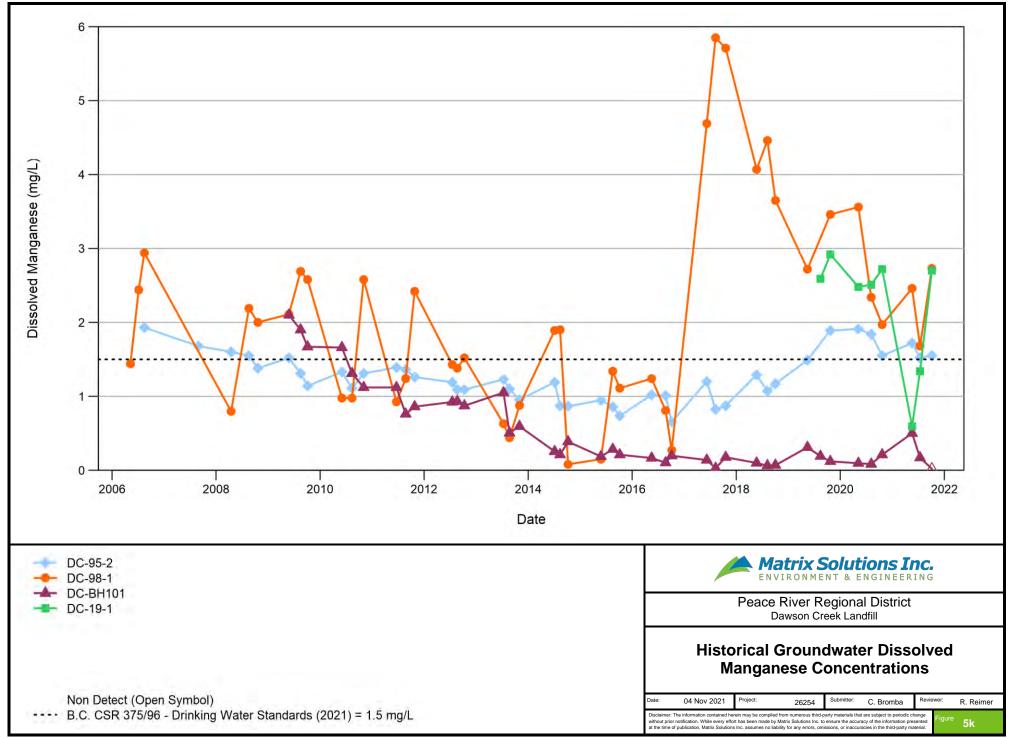


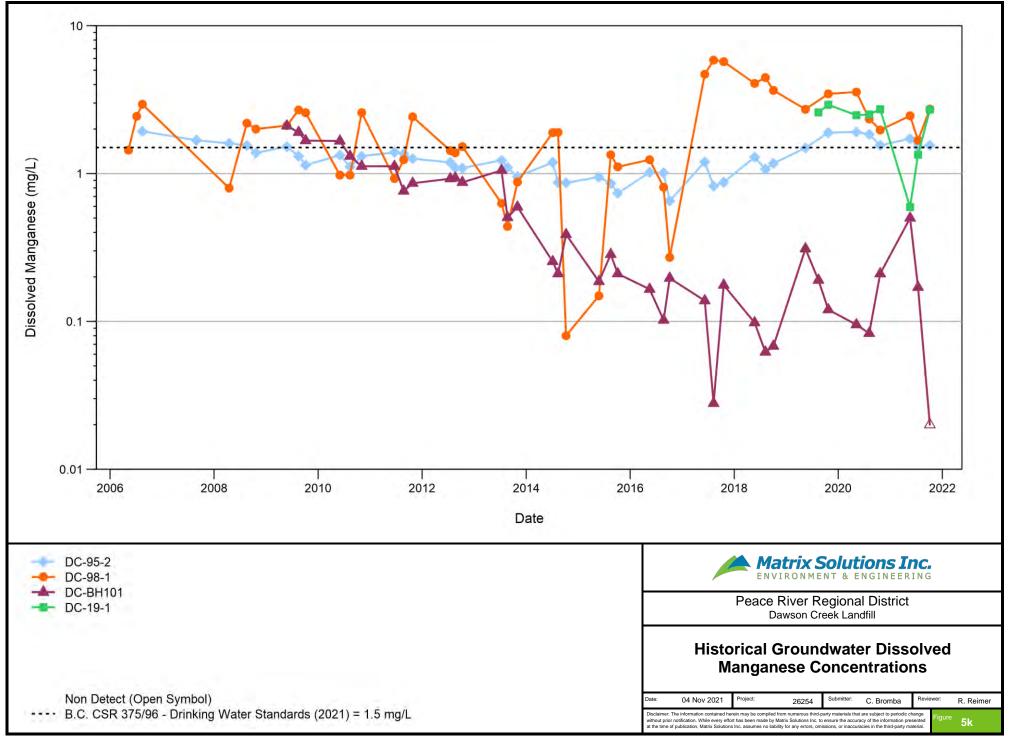


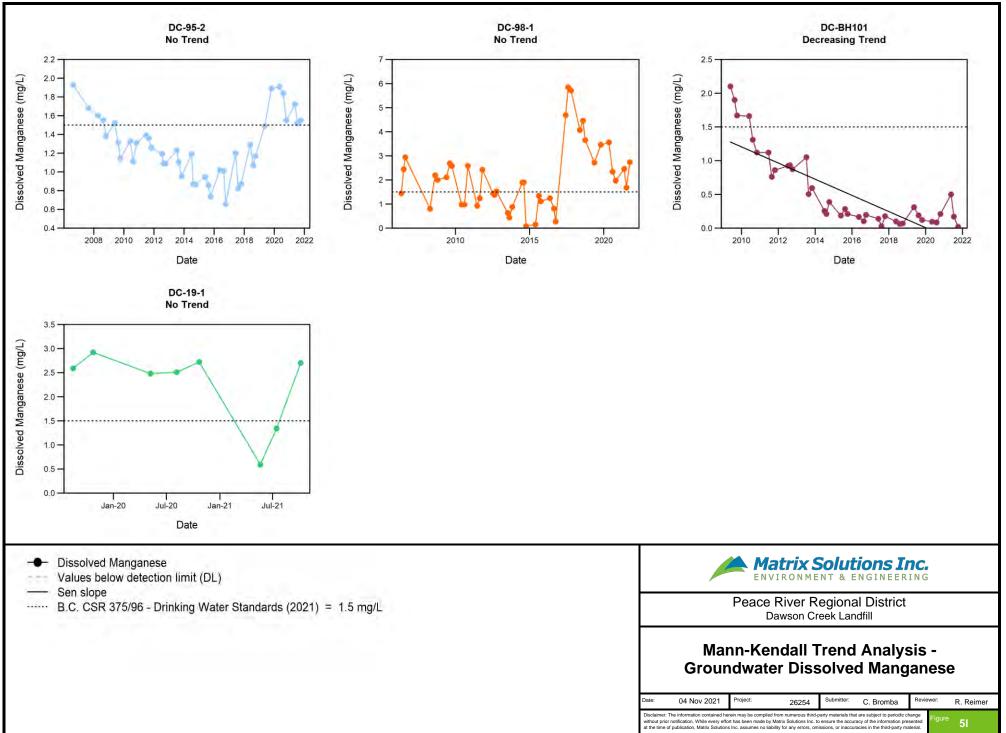


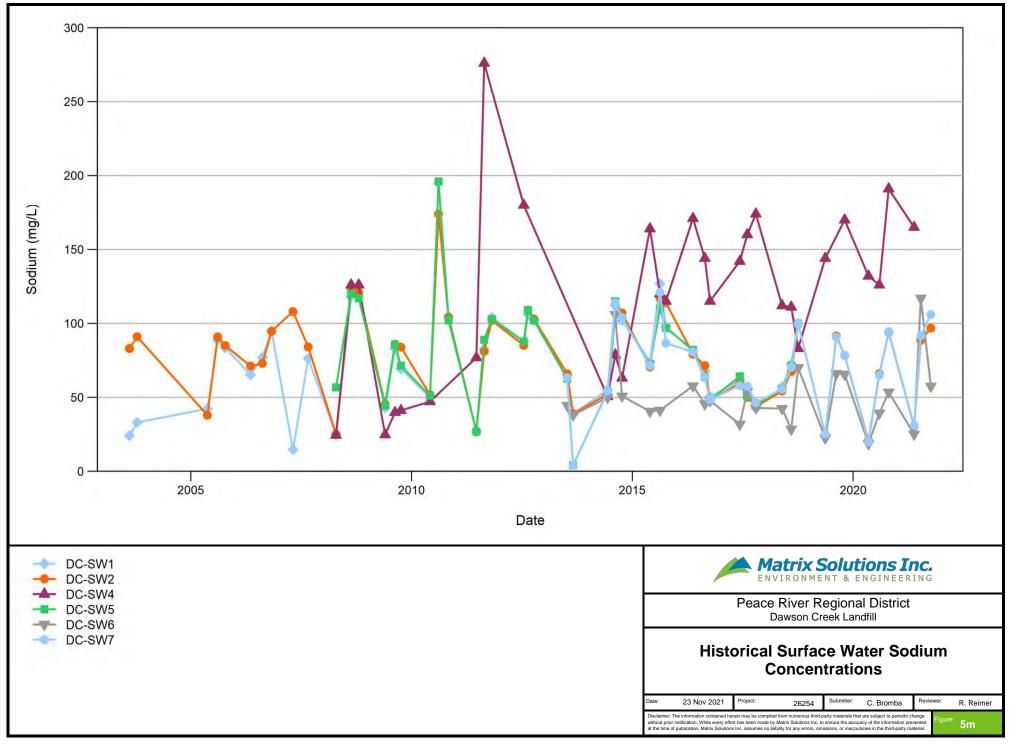

---- B.C. CSR 375/96 - Drinking Water Standards (2021) = 5 mg/L

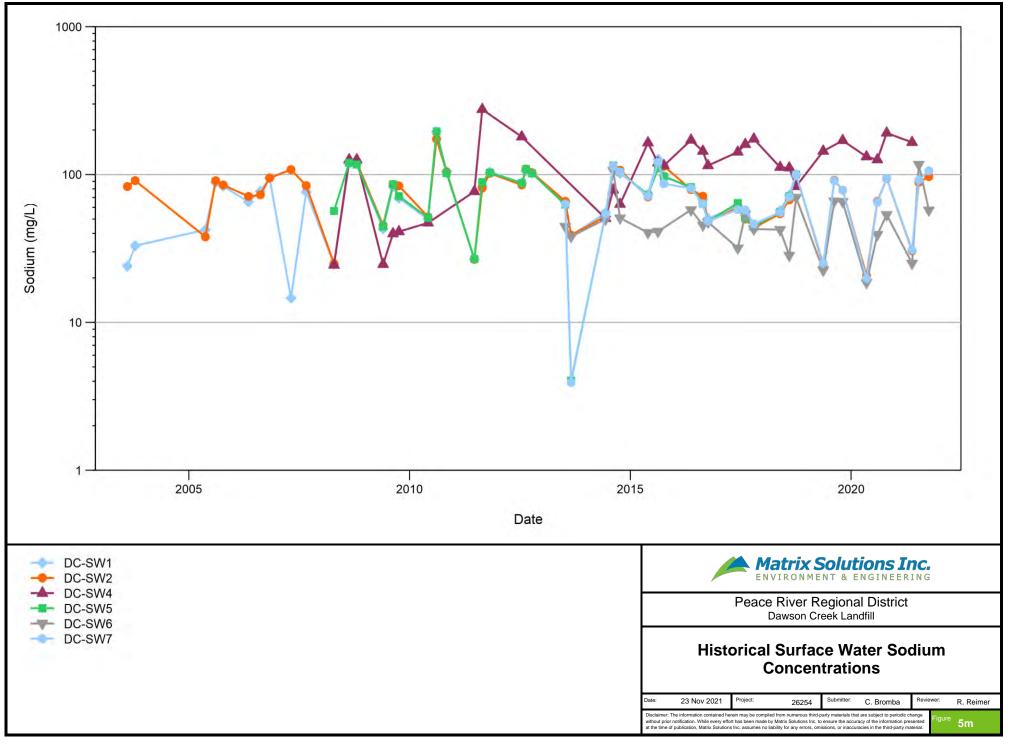

^{re} 5g

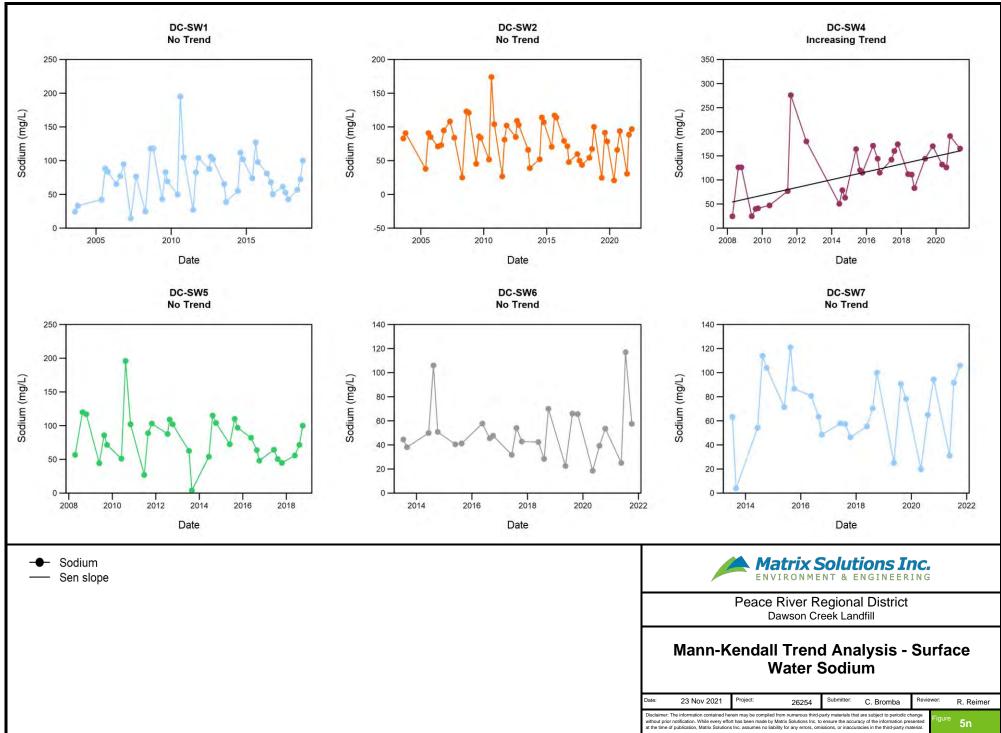

Disclaimer: The information contained herein may be completed from numerous third-party materials that are subject to periodic changes without prior notification. While every effort has been made by Matrix Solutions inc. to ensure the accuracy of the information present at the time of publication. Matrix Solutions inc. assume an oblisitify of any errors, emissions, or inorcuracies in the hird-party materials the set of the independence of the

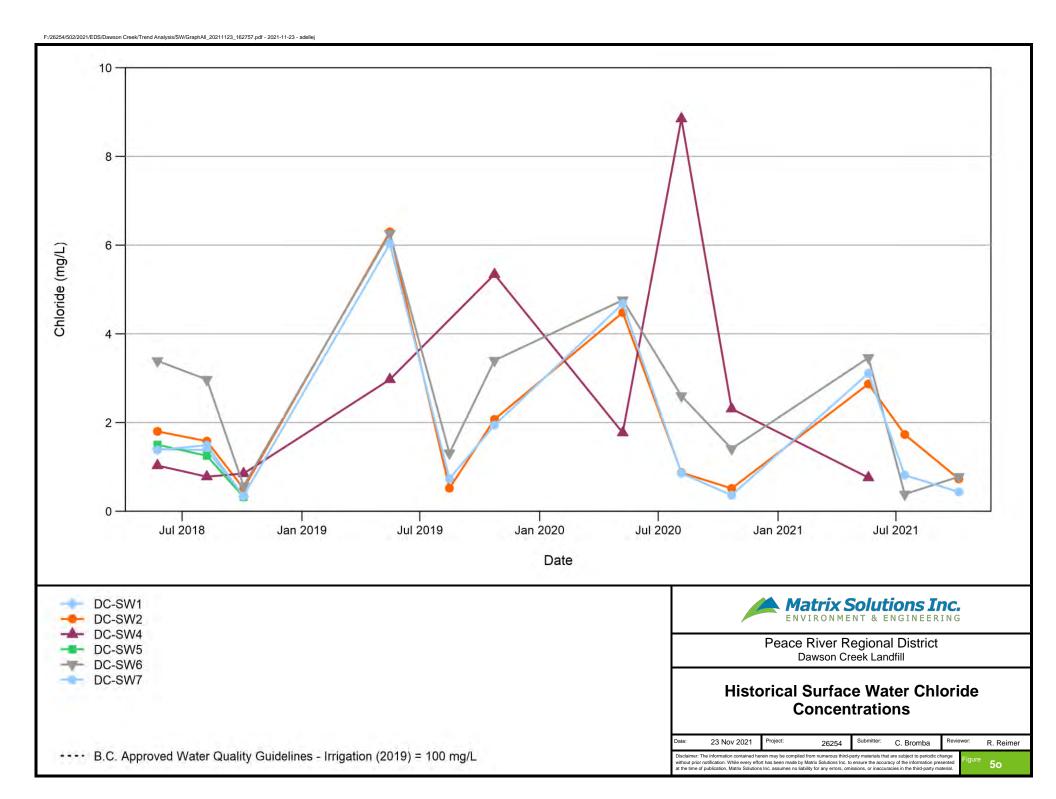


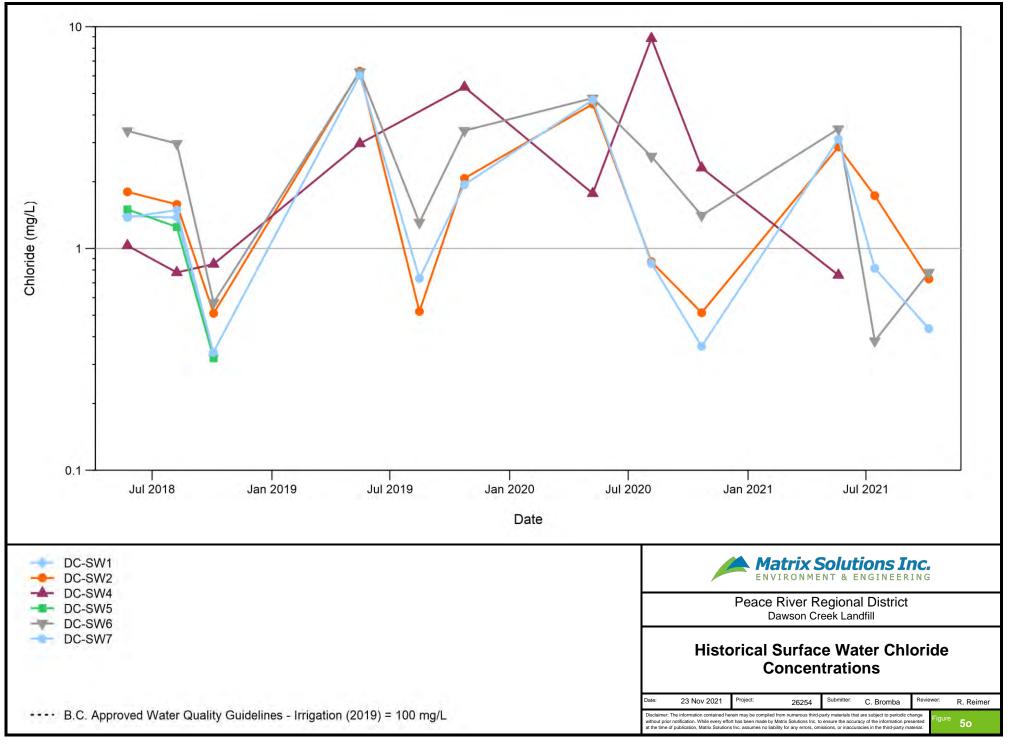


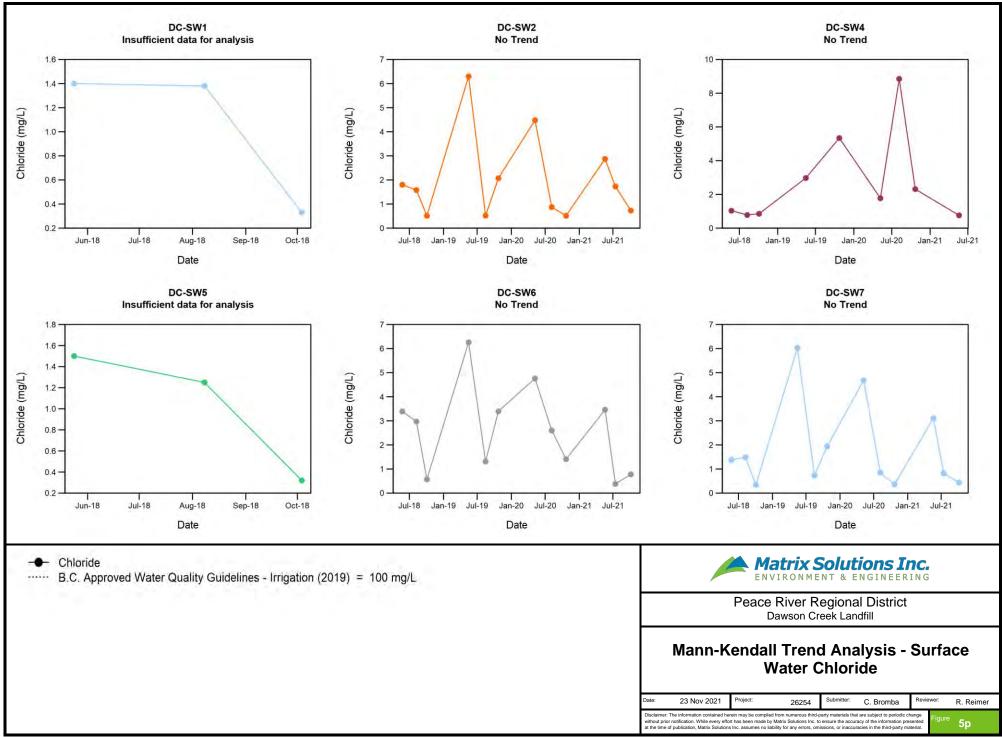


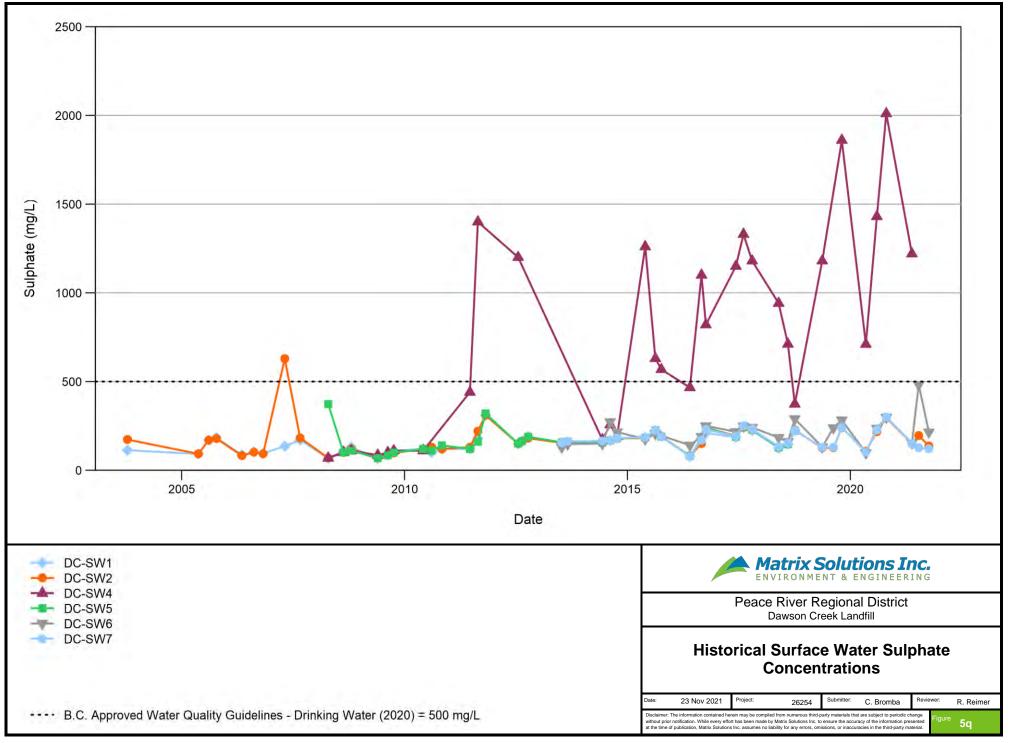


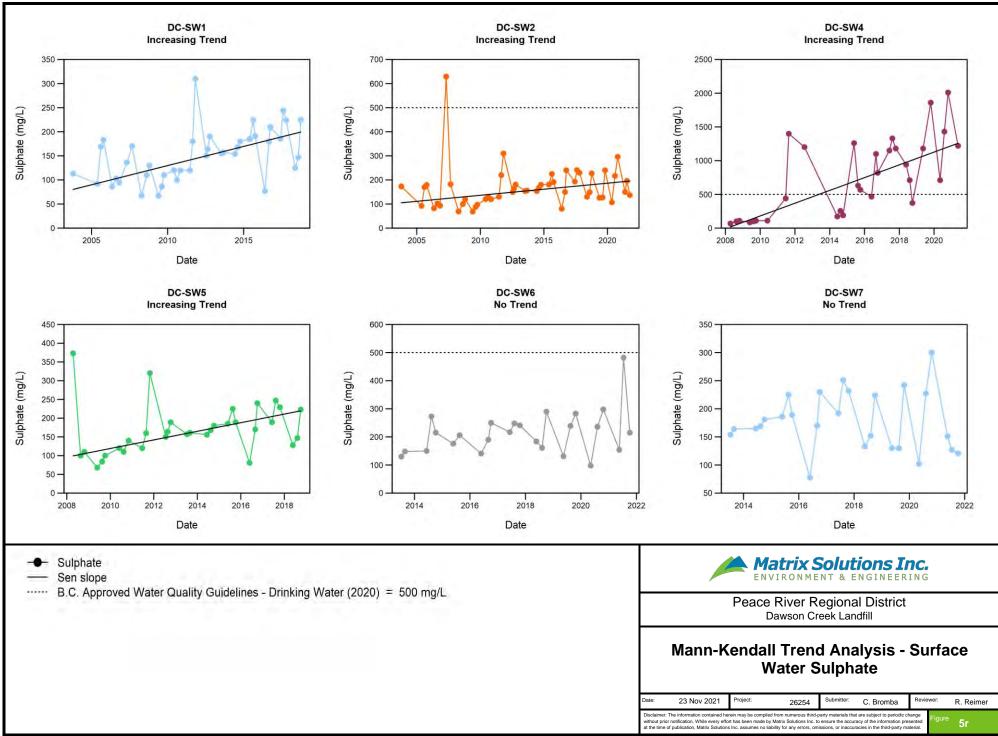


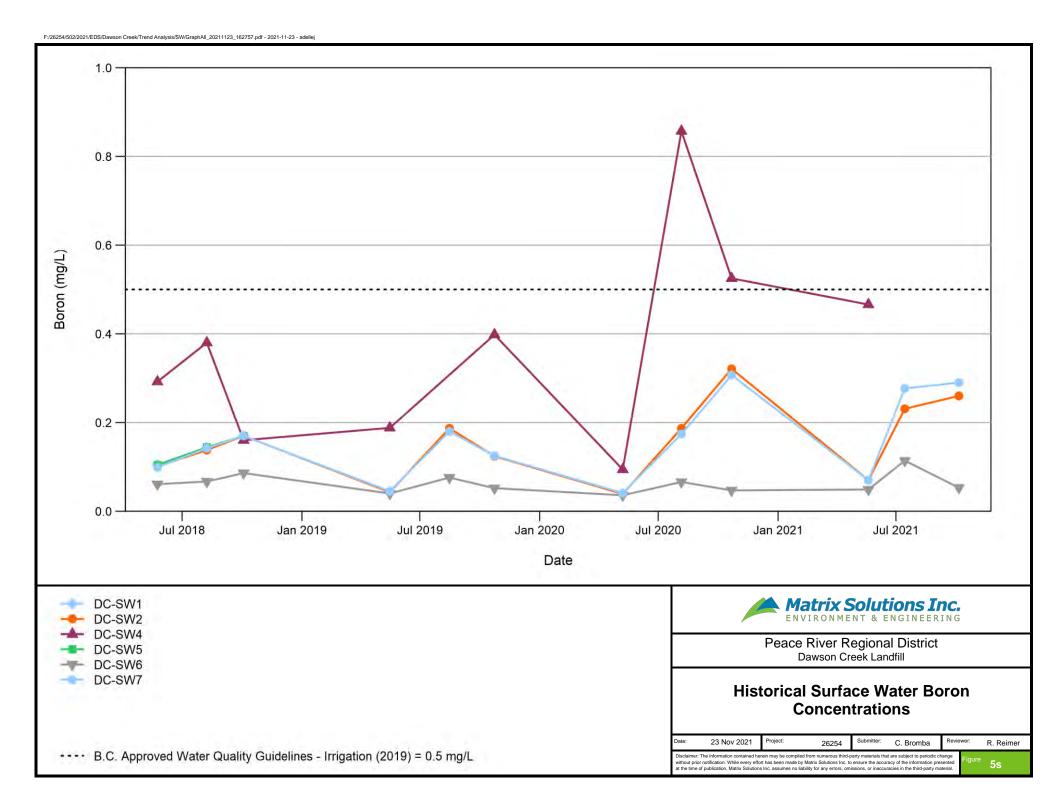


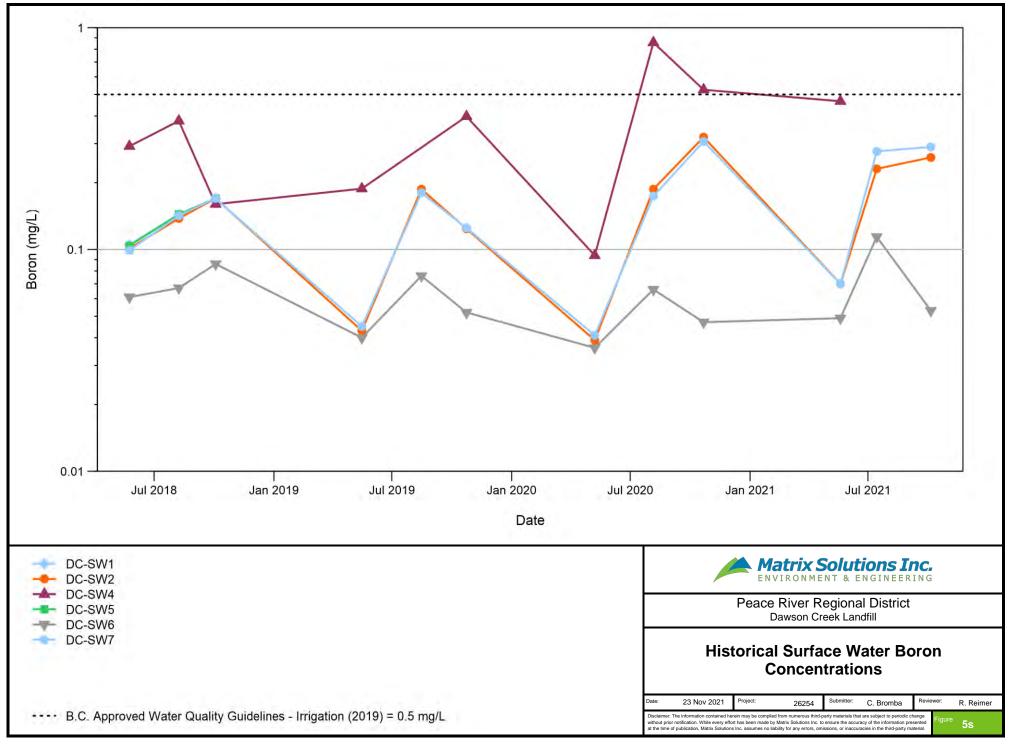


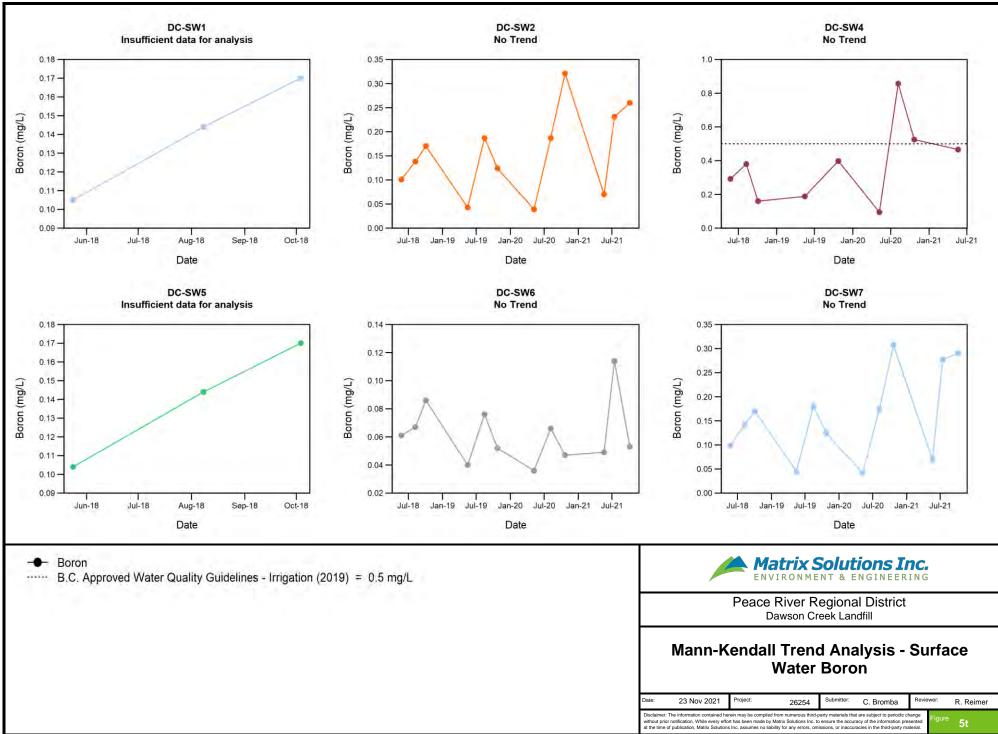


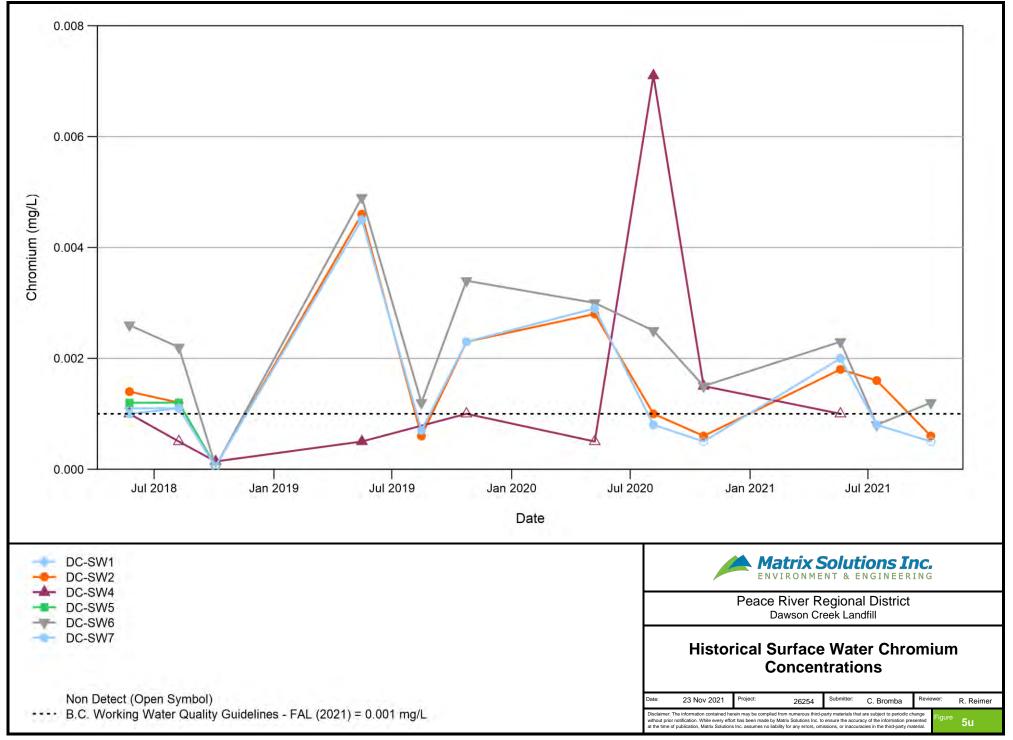


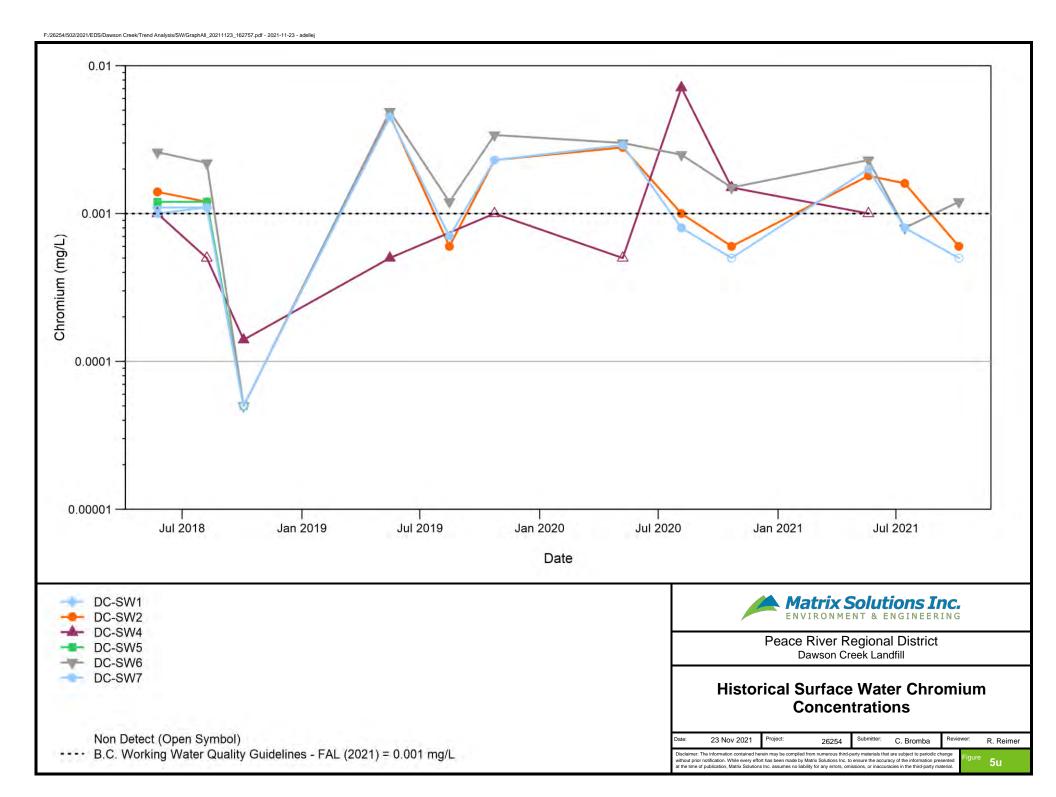


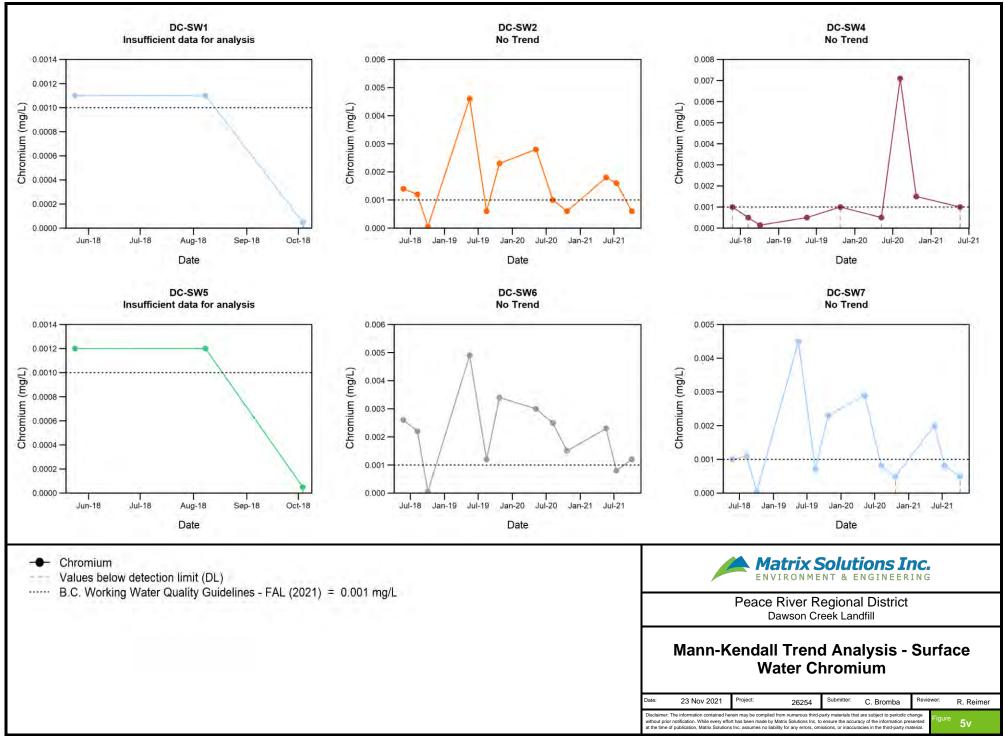


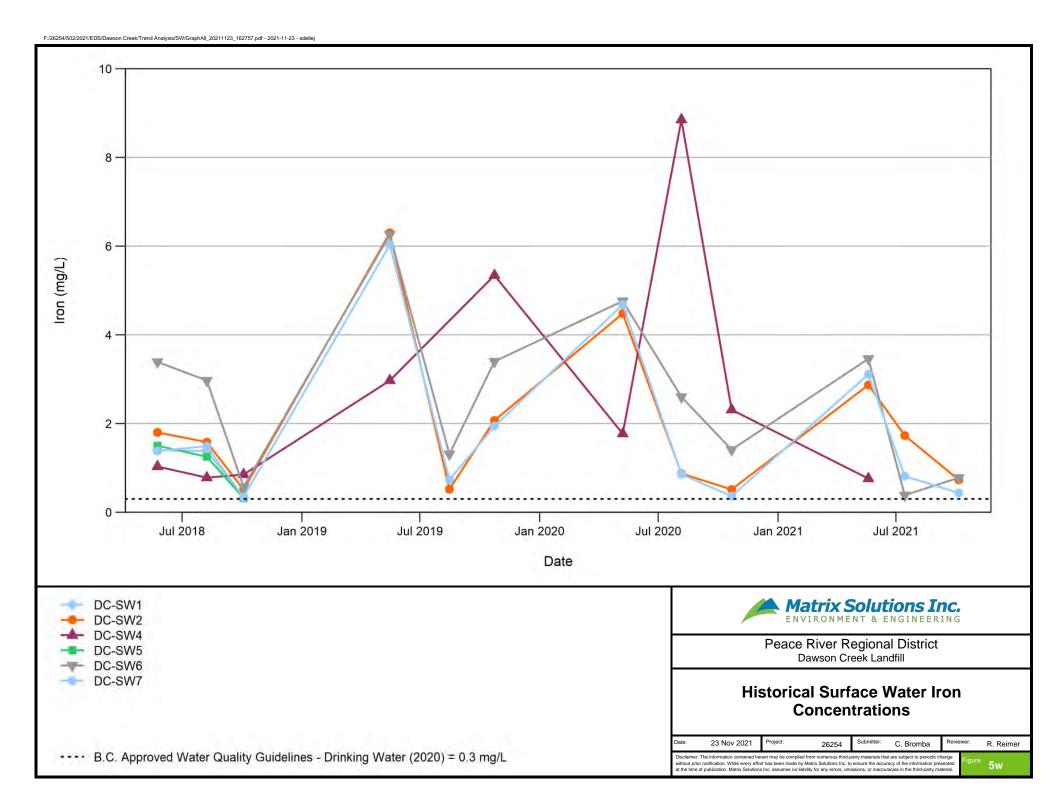


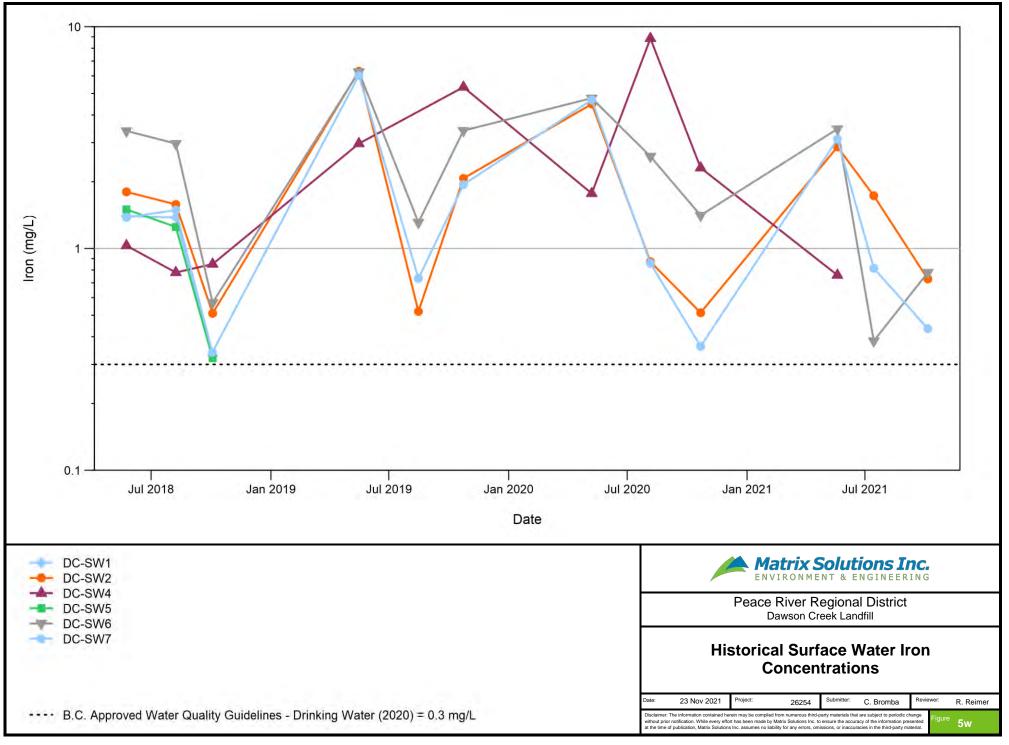


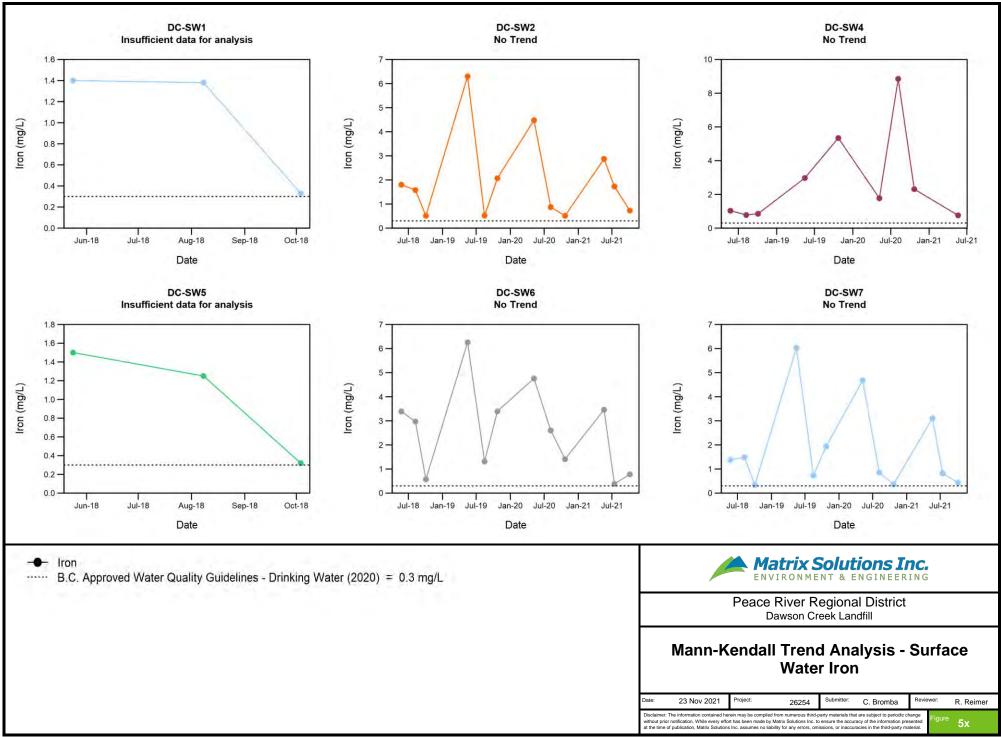


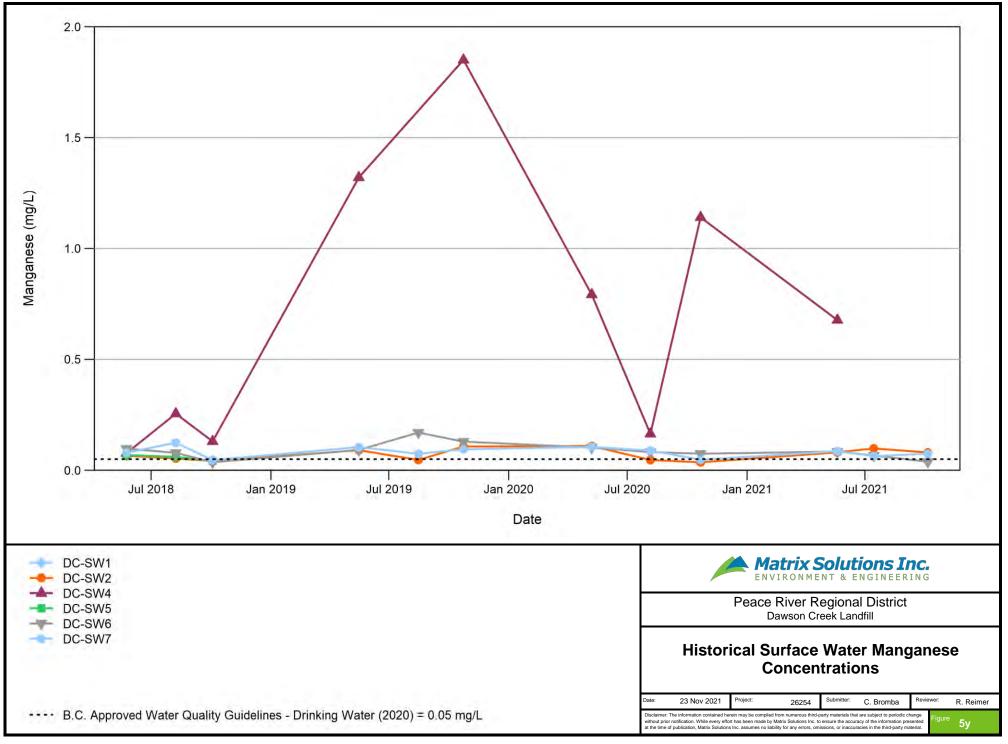


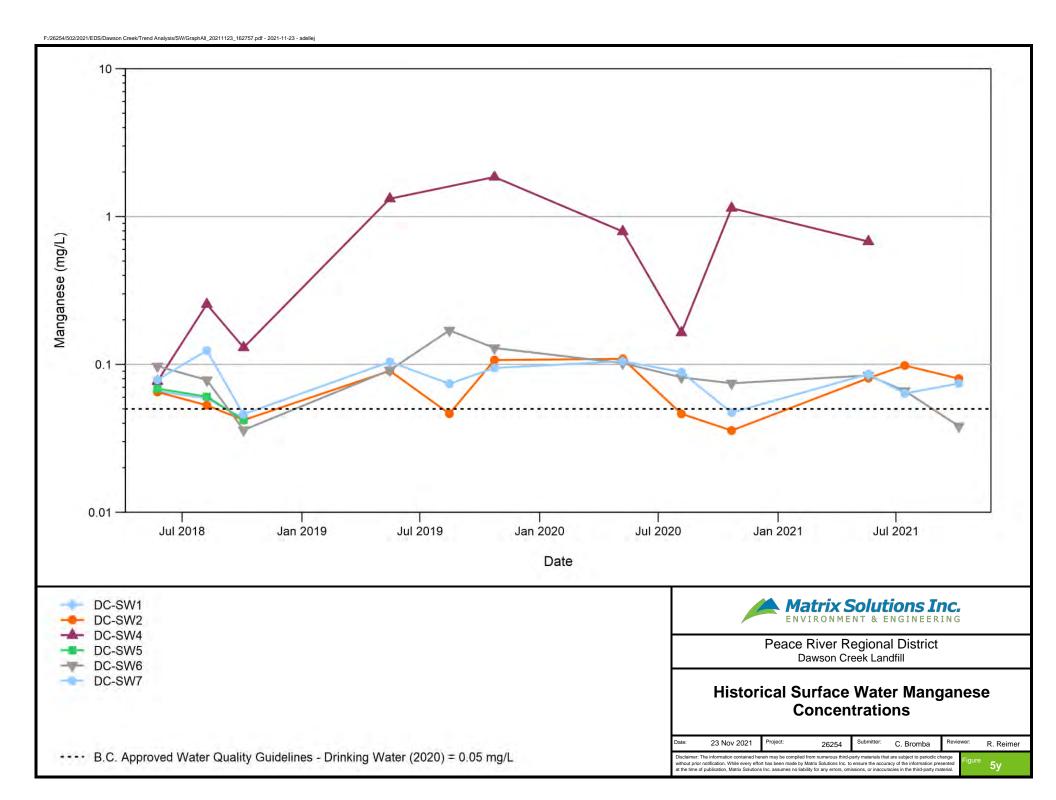


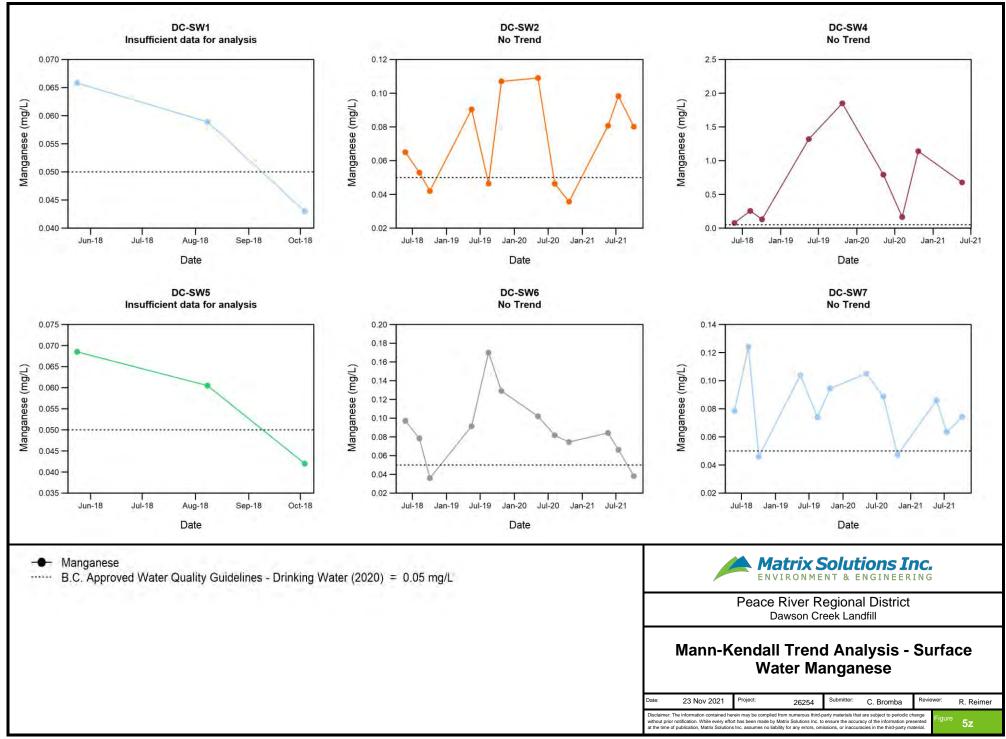












Appendix E Water Balance Model Calculations

Water Balance Model Calculations, Area 1

Calculation of Area 1 Groundwater Influx

Inputs:	Groundwater flux from upgradient (Q1)
Output:	Flux into Area 2

Upgradient Influx

Hydraulic Conductivity			tivity		
Q = K*A*dh/dl	Location	<u>K (m/s)</u>	<u>Unit</u>	Cross-section area = le	ength (across the landfil area) * thickness of saturated aquifer
K =	MW95-1	1E-07	Clay and Clay Till	length across landfill area =	256 m
	MW98-5	5E-06	Clay Till	average saturated thickness =	12.0 m
	MW98-2	5E-07	Clay w sand	Cross-sectional area =	3069 m ²
	MP99-1A	3E-08	high plastic clay		
	MP99-1B	3E-09	high plastic clay		
	MP99-2	3E-09	high plastic clay		
Geo mean K = dh/dl =		6.4E-08 0.05	m/sec m/m		
V _{Average} = K*dh/dl / n					
8.9E-09 m/sec					
0.3 m/yr					
Porosity (assumed)		0.35			
Groundwater flux from upgradient (Q1)			300 m3/year		

Calculation of Groundwater Flux out of landfill area

Inputs:

Outputs:

Groundwater flux from upgradient (Q1)

GW flux from Areas 1 (Q1) Leachate generation from landfill (Q2) Flux into Area 3 (Q3)

300 m3/year

5,497 m3/year

Flux out of landfill area (HELP Model - GHD, 2023 (Q3 - Low Permeability)	931 m3/year
Runoff (HELP Model - GHD, 2023 (Medium Permeability)	5,107 m3/year
Runoff (HELP Model - GHD, 2023 (Low Permeability)	6,369 m3/year
Evapotranspiration (HELP Model - GHD, 2023 (Medium Permeability)	18,598 m3/year
Evapotranspiration (HELP Model - GHD, 2023 (Low Permeability)	21,903 m3/year
Leachate Generation (HELP Model - GHD, 2023 (Medium Permeability) (Q2 Medium)	5,197 m3/year
Leachate Generation (HELP Model - GHD, 2023 (Low Permeability) (Q2 Low)	631 m3/year

Flux out of landfill area (HELP Model - GHD, 2023 (Q3 - Medium Permeability)

Water Balance Model Calculations, Area 3

Calculation of Groundwater Flux out of landfill area

Inputs:

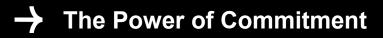
Outputs:

Flux out of landfill area (HELP Model - GHD, 2023 (Low Permeability) (Q3 Low) Flux out of landfill area (HELP Model - GHD, 2023 (Medium Permeability) (Q3 High)

Infiltration rate for Dawson Creek (CSR Protocol 2) Downgradient area Flux from precipitation infiltration (Q4)

Flux out of Area 3 - Discharge into Dawson Creek (Q5 Low) Flux out of Area 3 - Discharge into Dawson Creek (Q5 High) Flux from Area 2 (Q3) Infiltration of precipitation downgradient of the landfill (Q4)

Discharge to Dawson Creek (Q5)


931 m3/year 5,497 m3/year

80 mm/year 15000 m2 1200 m3/year

2,131 m3/year 6,697 m3/year

ghd.com

